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of why increased inaccuracy 
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Supercomputer scheduling
• FCFS

– Causes fragmentation

• The “backfilling”
optimization
– Can jump over 1st

queued job if not 
delaying it
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Backfilling: Pros
• Simple and easy

– For users to understand (“it’s FCFS with…”)
– For developers to implement

• Batch
– Scientific apps. often tailored to use entire memory
– No need to co-schedule

• Significantly improves performance
– Utilization (from 40-60% to 70%), throughput, 

response time,…
• Comparable to more sophisticated alternatives

– Involving preemption & migration
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Pros’ consequences
• Backfilling is very popular in production systems

-

– 60% of the top-500 use backfilling
• And the focus of many research efforts

– Dozens of variations
– Dozens of papers
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Backfilling: The price
• Need to know jobs’

runtimes a-priori

• Thus, users must 
provide estimates of 
how long their jobs 
will run

• Jobs attempting to 
exceed their 
estimates are killed
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The f-model

predefined “badness factor”f  ≥ 0
input:   a job’s runtimeR

output:   the job’s estimateE

E uniform in [R, (f+1) ·R]random
E = (f+1) ·Rdeterministic

complete accuracy (E=R)f = 0
increasingly inaccurate
estimatesincreased f

Intuition

f-model

Notation
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Methodology: Using the f-model
• Logs: from the “Parallel Workload Archive”

– We use four (SDSC, CTC, KTH, and BLUE)
– 10s to 100s of thousands of jobs, spanning 1-3 years
– Replacing user-estimates with model-values

• Simulator’s input: the modified workload
• Simulator’s output: performance

– avg. wait-time and slowdown

estimateruntimesize [CPU#]arrival timejob ID
00:30:00
02:00:00
18:00:0018:00:0049Aug 24, 13:25:203

…

00:15:372Aug 24, 12:00:011
01:50:01128Aug 24, 12:05:372

…………
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Claim 1:
Inaccuracy improves performance
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Explanation 1: 
The “holes argument”

S. Chiang, A. Arpaci-Dusseau, and M. Vernon
[JSSPP, 2002]:

“…when multiplying estimates by two, job with long 
runtimes can have very large overestimation, which 
leaves larger holes for backfilling shorter jobs.
As a result, average slowdown and wait may be lower.”
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Explanation 2:
The “balance argument”

Y. Zhang, H. Franke, J. Moreira, 
and A. Sivasubramaniam [IPDPS, 2000]:
“On average, overestimation impacts both the jobs 
that are running and the jobs that are waiting…
…the probability of finding a backfilling candidate 
effectively does not change with the overestimation.”
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The robustness claim
D. England, J. Weissman, and J. Sadagopan
[HPDC, 2005]:

“…Our results support those of previous work and 
also indicate that backfilling is robust to inaccurate 
estimates in general.
It seem that, with respect to backfilling,
what the scheduler doesn’t know won’t hurt it.”
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Intermediate summary
• Two observations

– Inaccuracy improves performance
– Inaccuracy doesn’t affect performance

• Two contradictory explanations
– The holes argument
– The balance argument

• One mystery
– Improved accuracy should result in better packing
– How come the opposite is true?
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E is uniform in [R, (1+f) • R]

Using mean & confidence exposes
a clear trend
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Control: The descending part
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“Heel & toe” dynamics
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Control: The ascending part
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Bigger f =>  more long jobs 
masquerade as short & vise versa
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Bigger f =>   wider holes   =>
longer jobs enjoy backfilling
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The role of burstiness
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CTC-336

by half
shrink arrivalsshrink size

by half
original

workload
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• “Unfairness” is the avg. 
delay of jobs beyond 
their “Fair Start Time”

• Jobs that start before 
that time contribute 
zero to the avg.

• Multiplying by a factor 
simply means trading 
off fairness for 
performance

Fairness/performance tradeoff
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Not just a theoretical result…
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• The more accurate the value we multiply, the better 
the performance & fairness

• Increased accuracy actually improves performance 
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The source of users’ badness: 
Modality

1. Modality => many “identical” jobs => bad scheduling info.
2. ‘Max’ is especially popular => such jobs never backfill !
=> Increased inaccuracy means increased modality
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• Should distinguish between 2 inaccuracy types:

• “Inaccuracy helps” is a myth: the f-model is
– Inadequate to study the impact of real inaccuracy
– Inadequate workload-model for performance eval.

• Need a realistic model
– “Modeling user runtime estimates” [JSSPP, 2005]

• Have strong motivation to improve estimates
– “Backfilling with system predictions” [TPDS, 2007]

Conclusions

performancenatureproperty oftype 
worsened modal and favors ‘max’usersreal 
improvespromotes heel & toeschedulersartificial (f)
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