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Supercomputer scheduling
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Backfilling: Pros

+ Simple and easy
- For users to understand (“it's FCFS with...")
- For developers to implement

* Batch
- Scientific apps. often tailored to use entire memory
- No need to co-schedule

» Significantly improves performance

- Utilization (from 40-60% to 70%), throughput,
response time,...

+ Comparable to more sophisticated alternatives
- Involving preemption & migration
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Pros’ consequences

» Backfilling is very popular in production systems

y Company product
commercial free
IBM LoadLeveler
Cluster Resources Moab Maui
Platform LSF
Altair PBS-Pro OpenPBS
Sun GridEngine

- 60% of the top-500 use backfilling

» And the focus of many research efforts
- Dozens of variations
- Dozens of papers
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Backfilling: The price

* Need to know jobs'’ FCFS
runtimes a-priori o I 2

+ Thus, users must § I q .
provide estimates of

hqw long their jobs FCFS + Backfil
will run 5

3 |

Time

ing = "EASY"

+ Jobs attempting to
exceed their
estimates are killed

Nodes
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The /~model

fz20 predefined "badness factor”
Notation (R input: a job's runtime

E output: the job's estimate

random Euniform in /R, (f+1)-R]
f-model .

deterministic | £ = (f+1)-R

f=0 complete accuracy (E=R)
Intuition | increasingly inaccurate

increased £ estimates
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Methodology: Using the f-model

* Logs: from the "Parallel Workload Archive”

- We use four (SDSC, CTC, KTH, and BLUE)
- 10s to 100s of thousands of jobs, spanning 1-3 years

- Replacing user-estimates with model-values —

Job ID arrival time size [CPU#] | runtime | estimate
1 Aug 24, 12:00:01 2 00:15:37 | 00:30:00
2 Aug 24, 12:05:37 128 01:50:01 | 02:00:00
3 Aug 24, 13:25:20 49 18:00:00 | 18:00:00

+ Simulator's input: the modified workload
+ Simulator’'s output: performance
- avg. wait-time and slowdown
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Claim 1:

Inaccuracy improves performance

walt
[minutes]

bounded
slowdown

8/28

SDSC
320-

300+

280-

80+
75+

70-

M accurate (f=0)

20-

17-

5_

4_

3_

CTC
23-

100+

85-

751

70+

65-

KTH

115,

1N 5%

100-

358

30+

25"

I doubled (f=1, deterministic)

BLUE

130-



Explanation 1:
The "holes argument”

S. Chiang, A. Arpaci-Dusseau, and M. Vernon
[JSSPP, 2002]:
"..when multiplying estimates by two, job with long

runtimes can have very large overestimation, which
leaves larger\holes|for backfilling shorter jobs.

As a result, average slowdown and wait may be lower.”
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Claim 2:
Performance is independent of 7

BLUE - wait
e A TR L L R g L 35 -

BLUE - slowdown

f (badness factor)

random
deterministic

10/28



Explanation 2:
The "balance argument”

Y. Zhang, H. Franke, J. Moreira,
and A. Sivasubramaniam [IPDPS, 2000]:

"On average, overestimation impacts both the jobs
that are running and the jobs that are waiting...

..1he probability of finding a backfilling candidate
effectively does not change with the overestimation.”
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The robustness claim

D. England, J. Weissman, and J. Sadagopan
[HPDC, 2005]:

"..0ur results support those of previous work and
also indicate that backfilling is\robust|to inaccurate
estimates in general,

It seem that, with respect to backfilling,
what the scheaduler doesnt know won't hurt it.”

12/28



Intermediate summary

»+ Two observations
- Inaccuracy improves performance
- Inaccuracy doesn't affect performance

* Two contradictory explanations
- The holes argument
- The balance argument

- One mystery
- Improved accuracy should result in better packing
- How come the opposite is true?
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Using mean & confidence exposes
a clear trend

BLUE: V-shape (the norm) CTC: L-shape
L e R e e ] 2 PO SR | T

wait [minutes]

f (badness factor)
£ is uniform in /R, (1+f) - R]

f=0
random (mean)
random (90% confidence)
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Control: The descending part

BLUE V- shape TC: L- shape

o | 24 o NIRRT T
9 | | |

o= 29 —_— —
g

= 20 ANy == T T i
£ | , |

e . S = B
+~ 18— PPel o
S | el ]
D 16 .l e A

6 8 10

f (badness factor)

15/28



What's going on? Balance? Holes?

20t e
it e e L et e
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f (badness factor)
certainly more backfilling activity

backfilling
[% of jobs]

f=0
random (mean)
random (90% confidence)
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"Heel & toe" dynamics

Assume £ = 2R (that is, f=1; determi

nistic)
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Control: The ascending part

BLUE V- shape CTC L shape

wait [minutes]

f (badness factor)
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Bigger 7 => more long jobs
masquerade as short & vise versa

range for e, 5% :

r‘l( q F'r'l &)\I
5 IERVS

=
Q.

5% )»F:.r' ()

° range fore, ° 1 ry/r
- >
runtimes F (badness factor; F=f+1)

The probability the scheduler is erroneously told j;
is longer than j,, is monotonically increasing with 7

19/28



Bigger ¥ => wider holes =>
longer jobs enjoy backfilling

runtime of
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runtime of SJFness
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Control: Why is CTC different?

BLUE V- shape CTC L sha e

wait [minutes]

f (badness factor)
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The role of burstiness
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CTC-336
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Fairness/performance tradeoff

» "Unfairness" is the avg.
delay of jobs beyond
their "Fair Start Time"

- Jobs that start before
that time contribute
zero to the avg.

* | Multiplying by a factor
simply means trading
off fairness for
performance
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Not just a theoretical result...

slowdown (performance) unfairness (minutes)

real —  f (badness factor; log scale)
deterministic

The more accurate the value we multiply, the better
the performance & fairness

* Increased accuracy actually improves performance
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The source of users’ badness:
Modality
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1. Modality => many “identical” jobs => bad scheduling info.
2. 'Max’ is especially popular => such jobs never backfill |
=> Increased inaccuracy means increased modality
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The truncated f-model:
min( (f+1)-R, Max’)
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Conclusions

» Should distinguish between 2 inaccuracy types:

fype property of nature performance
real users modal and favors 'max’ | worsened
artificial (f) | schedulers | promotes heel & toe |improves

» "Inaccuracy helps” is a myth: the ~model is
- Inadequate to study the impact of real inaccuracy
- Inadequate workload-model for performance eval.
* Need a realistic model
- ‘Modeling user runtime estimates” [JSSPP, 2005]

* Have strong motivation to improve estimates
- "Backfilling with system predictions” [TPDS, 2007]
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