Constructing a Non-Linear Model with Neural Networks for Workload Characterization

Richard M. Yoo Georgia Tech
Han Lee Intel Corporation
Kingsum Chow Intel Corporation
Hsien-Hsin S. Lee Georgia Tech
Java Middleware Tuning

- Workload tuning
 - Finding the best **workload configuration** that brings about the best **workload performance**
 - **configuration parameters**: things we have control over
 - thread pool size, JVM heap size, injection rate, etc.
 - **performance indicators**: workload behavior in response to configurations
 - response time, throughput, etc.

- Java middleware tuning
 - Inherently complicated due to its **nonlinearity**
Nonlinear Workload Behavior

- The performance of a workload does not necessarily improve or degrade in a linear fashion in response to a linear adjustment in its configuration parameters
 - Hard to predict the performance change with respect to configuration changes
 - Lottery

Sample data distribution from a case study
Nonlinear Behavior in Java Middleware

- Dominant in Java middleware behavior due to its stacked execution environment

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java Application Server</td>
</tr>
<tr>
<td>Java Virtual Machine</td>
</tr>
<tr>
<td>Operating System</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
</tbody>
</table>

A stacked execution environment
A Model Based Approach

- Regard the relation between the m configuration parameters and the n performance indicators as an $m \rightarrow n$ nonlinear function

- Map the workload tuning problem to a nonlinear function approximation problem

\[f(x) : X_1, X_2, \ldots, X_m \rightarrow Y_1, Y_2, \ldots, Y_n \]
Function Approximation with Neural Networks

- Artificial Neural Networks
 - A network of many computational elements called *perceptrons*
 - Weighted sum of inputs + nonlinear activation function
 - Learn the input by adjusting the weights to minimize the prediction error for Y
 - Depending on the structure and organization of perceptrons, many neural networks exist

A typical structure of a perceptron

\[
y = f\left(\sum_{i=1}^{n} w_i x_i - w_0\right)
\]

\[
f(x) = \frac{1}{1 + \exp(ax)}
\]
Multi-Layer Perceptrons (MLPs)

- A stacked layer of multiple perceptrons
- A feed-forward network
 - Output from previous layer feeds the next layer

A 3-layer perceptron
Training MLPs

- Backpropagation algorithm
 - By far the most popular method (standard)
 - Propagate the error of outer layer back to inner layer (blaming)
 - Each layer calculates its local error that contributed to the outer layer’s error
 - Adjust each layer’s weight to minimize the local error

![A 3-layer perceptron](image-url)
Reason for Choosing MLP

- Among many neural network configurations,
 - MLPs excel in function approximation
 - Can approximate any nonlinear function
 - MLPs are widely used in function approximation and pattern classification area
Training the Neural Network

- Neural networks are trained with samples

- Each sample is a tuple comprised of configuration parameter settings and the corresponding performance indicator values
 \[(X_1, X_2, \ldots, X_m, Y_1, Y_2, \ldots, Y_n)\]

- Present each performance sample to the neural network multiple times

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread pool size</td>
<td>JVM heap size</td>
<td>Response time</td>
</tr>
<tr>
<td>10</td>
<td>256</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>256</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>512</td>
<td>7</td>
</tr>
</tbody>
</table>
Training the Neural Network

- When presented with each samples, based on the previous knowledge, neural network tries to predict the performance indicator Y'_1, Y'_2, \ldots, Y'_n by observing given configuration settings X_1, X_2, \ldots, X_m.

<table>
<thead>
<tr>
<th>X_1 (Thread pool size)</th>
<th>X_2 (JVM heap size)</th>
<th>Y_1 (Response time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>256</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>256</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>512</td>
<td>7</td>
</tr>
</tbody>
</table>
Training the Neural Network

- At the same time, neural network learns the samples by minimizing the error between predicted performance values \((Y'_1, Y'_2, \ldots, Y'_n)\) and the actual performance values \((Y_1, Y_2, \ldots, Y_n)\).

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(Y_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread pool size</td>
<td>JVM heap size</td>
<td>Response time</td>
</tr>
<tr>
<td>10</td>
<td>256</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>256</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>512</td>
<td>7</td>
</tr>
</tbody>
</table>

\[f(x) \]

error = 3
Training the Neural Network

- Process repeats over the entire samples, multiple times
- Training stops when a desired minimum error bound is reached

<table>
<thead>
<tr>
<th>X₁ (Thread pool size)</th>
<th>X₂ (JVM heap size)</th>
<th>Y₁ (Response time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>256</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>256</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>512</td>
<td>7</td>
</tr>
</tbody>
</table>

f(x)
Model Validation

- Model validity = predictability over unseen samples
 - Quantify the model validity by prediction accuracy over unseen samples

- K-fold cross validation
 - Guarantee that the sample set represents the entire sample space

```
divide the samples into k sets;
for (i in 1:k) {
  leave 1 set out;
  model.train( k - 1 sets);
  error[i] = model.error( 1 set that was left out);
}
average the error[];
```
Summary of Model Construction

1. Collect performance samples with varying configurations
2. Train neural network with samples
3. Perform k-fold cross validation to validate the model
Workload

- J2EE 3-tier web service, modeling the transactions among a manufacturing company, its clients, and suppliers

- 4 configuration parameters
 - Thread count assigned to \textit{mfg queue}
 - Thread count assigned to \textit{web queue}
 - Thread count assigned to \textit{default queue}
 - \textit{Injection rate}

- 5 performance indicators
 - \textit{Manufacturing response time}
 - \textit{Dealer purchase response time}
 - \textit{Dealer manage response time}
 - \textit{Dealer browse autos response time}
 - \textit{Throughput}

∴ 4 -> 5 nonlinear function approximation
Model Construction

- Collected 54 data samples with varying configurations
- Train the neural network with R statistical analysis toolkit
 - Single hidden layer
 - 100 hidden nodes
 - Maximum iteration = 120
- Performed 5-fold cross validation over the model
Model Validation: Manufacturing Response Time

- o : actual value
- x : predicted value

Prediction for training set

Prediction for validation set
Model Validation: Throughput

- o : actual value
- x : predicted value

Prediction for training set

Prediction for validation set
Model Accuracy

- Average prediction error for validation set

<table>
<thead>
<tr>
<th>Trial</th>
<th>Manufacturing Response Time</th>
<th>Dealer Purchase Response Time</th>
<th>Dealer Manage Response Time</th>
<th>Dealer Browse Autos Response Time</th>
<th>Effective Transactions per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.30%</td>
<td>10.10%</td>
<td>5.70%</td>
<td>9.50%</td>
<td>0.10%</td>
</tr>
<tr>
<td>2</td>
<td>1.50%</td>
<td>7.30%</td>
<td>2.70%</td>
<td>4.20%</td>
<td>0.30%</td>
</tr>
<tr>
<td>3</td>
<td>4.50%</td>
<td>8.90%</td>
<td>3.30%</td>
<td>5.00%</td>
<td>0.20%</td>
</tr>
<tr>
<td>4</td>
<td>4.00%</td>
<td>12.60%</td>
<td>12.60%</td>
<td>11.30%</td>
<td>0.10%</td>
</tr>
<tr>
<td>5</td>
<td>1.40%</td>
<td>11.30%</td>
<td>10.70%</td>
<td>6.40%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Average</td>
<td>3.00%</td>
<td>10.00%</td>
<td>7.00%</td>
<td>7.30%</td>
<td>0.20%</td>
</tr>
</tbody>
</table>

- Harmonic mean of model accuracy = 95%
Model Application

- Now we have an accurate and valid model

- Utilize this model to further improve the understandings in the workload
 - Project the model to 3D by fixing 2 out of 4 configuration parameters

- 3 typical behaviors appeared repetitively
 - Case of Parallel Slopes
 - Case of Valleys
 - Case of Hills
Case of Parallel Slopes

- Parallel Slopes
 - Injection rate and manufacturing queue fixed at (560, 16)
 - Z axis: manufacturing response time
 - X, Y axis: web queue and default queue value

Tuning default queue value has less effect on response time once web queue value is fixed
Case of Valleys

- Valleys
 - Injection rate and manufacturing queue fixed at (560, 16)
 - Z axis: dealer purchase response time
 - X, Y axis: default queue and web queue value

- Valleys formed at (default, webQueue) = (15, 18)

Default queue value and web queue value should be adjusted in a coherent way to stay in the ‘valley’
Case of Hills

- Hills
 - Injection rate and manufacturing queue fixed at (560, 16)
 - Z axis: throughput
 - X, Y axis: web queue and default queue value

Default queue value and web queue value should be adjusted in a coherent way to stay on the ‘hill’
Conclusion

- Devised a methodology that incorporates neural network to construct and validate a nonlinear behavior model
- Neural networks are an excellent tool to construct a nonlinear workload behavior model
- Significant insights can be gained by analyzing these constructed models
Questions?

- Georgia Tech MARS lab

 http://arch.ece.gatech.edu/
Additional Thoughts

- Neural network models perform **interpolation** among samples
- **Cannot** be used for extrapolation
 - Cannot predict the performance for the configuration that is far apart from the training data
- Known limitation of MLP