
Exploring Small-Scale and
Large-Scale CMP Architectures
for Commercial Java Servers

R. Iyer, M. Bhat, L. Zhao, R. Illikkal, S.
Makineni, M. Jones, K. Shiv, D. Newell
Intel Corporation

Outline

Motivation
CMP Overview
Java Workload Overview
Methodology & Evaluation Results
Summary

Motivation

CMP architecture has been widely adopted
SCMP: a few large out-of-order cores

Intel Dual-core Xeon processor
LCMP: many small in-order cores

Sun Niagara, Azul

Platform resources are different for S/LCMP
Cores, cache/memory architecture, memory

How to make CMP evolve successfully

Identify critical challenges in future CMP platforms by evaluating the performance
of a commercial server workload on current and future CMP platforms

CMP Overview

SCMP: few large cores
Provide significant hardware features

out-of-order execution, complex branch prediction
Single-thread performance is high

LCMP: many small cores
Strip out area- and power-intensive features

In order execution, simple branch prediction
Provide high throughput

Cache

IO

H
T

H
T

H
T

H
T

Cache

IO

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

H
T

Mem

Mem

SCMP vs. LCMP

Cache scaling
Cache space is smaller for LCMP than for SCMP
Important to analyze and compare cache behavior

Memory bandwidth requirement
Higher for LCMP than for SCMP
Memory technology trend

DDR bandwidth and latency trends do not scale at
the same pace as the bandwidth requirements for
SCMP

Study bandwidth requirement

Outline

Motivation
CMP Overview
Java Workload Overview
Methodology
Evaluation Results
Summary

SPECjbb2005 Overview
SPEC's benchmark for evaluating the performance of server side Java
applications
Emulate a 3-tier client/server system on a single platform

client, business logic, database
The system modeled is a wholesale company, with warehouses that serve a number
of districts.

Warehouse
Contain 25MB of data (Java Collection objects)
Database tables (Java classes), data records (Java objects)

Six types of transactions against the warehouse
New Order, Order Status, Payment, Delivery, Stock level, Customer Report

Self contained and self driving
Generate its own data, multi-threaded operations, depend on no other package
beyond the JRE

Memory resident
local network I/O, no I/O to disk

Exercise implementations of the JVM, JIT, garbage collector and threads

Outline

Motivation
CMP Overview
Java Workload Overview
Methodology & Evaluation Results
Summary

Measurement-based Methodology

Intel’s dual-core dual-socket server platform
Two Intel Core 2 Duo processors

Each processor consists of two cores (3GHz)
4M L2 cache

4 FBD channels (533 MT/s) with peak bw @
25.6GB/s

EMON (Intel performance monitoring tool)
Study the performance scaling characteristics

Number of cores, number of sockets, cache size

Measurement Results

1S2C does not achieve the same performance
improvement as 2S2C

LLC sharing (MPI increased by 23%)
Speedup is close to perfect when going from 1S to
2S while keeping cores/socket constant

Processor Scaling 1S1C 1S2C 2S2C 2S4C
Throughput- Scaling 1.00 1.56 1.81 2.89
CPI 1.03 1.32 1.14 1.38
Pathlength 85,942 86,163 86,104 88,368
MPI 0.0031 0.0039 0.0032 0.0039
Time Spent in GC 1.83% 2.38% 2.86% 4.28%

Cache Scaling and Frequency Scaling

Use 2S4C, vary the LLC size
~30 to 40% improvement when double the cache size
Coherence / sharing behavior

HIT(M)%: % of misses finding line in other cache in S/E(M) state
HITM% is very low, HIT% decreases as we increase cache size

There is little sharing between SPECjbb2005 threads
Use 2S4C, vary the frequency

25% improvement when frequency is increased by 50%
The speedup is limited by CPI increase

Cache Scaling 1M 2M 4M
Throughput-Scaling 1.00 1.30 1.80
Pathlength 87,296 87,927 88,368
CPI 2.52 1.93 1.38
MPI 0.0087 0.0063 0.0039
HIT% 6% 4% 3%
HITM% 0% 0% 0%

Frequency-GHz 2 2.67 3
Throughput-Scaling 1.00 1.19 1.25
Pathlength 88,126 88,061 88,368
CPI 1.16 1.29 1.38
MPI 0.0039 0.0039 0.0039

Simulation-based Methodology

Cache simulator
Study the impact of scaling threads and cache
size
SCMP

4/8 threads per processor socket
1M ~ 16M

LCMP
32/64 threads per processor socket
4M ~ 32M

Focus on LLC
MPI: misses per instruction

Cache Scaling for SCMP & LCMP

MPI decreases constantly
MPI stays relatively constant as the number of threads and
cache size scales proportionally
MPI breakdown

Code MPI is negligible
Write MPI is relatively constant
Read MPI varies as a function of cache size

SPECjbb2005 Cache Scaling

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

1 2 4 8 16 32

Cache Size (in MB)

M
is

se
s

P
er

 In
st

ru
ct

io
n

64T
32T
16T
8T
4T

Miss Breakdown

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

Number of Threads & Cache Size

M
P

I (
+b

re
ak

do
w

n)

Load
Store
Code

Data misses are the main contribution and scale with cache size

Simulation-based Methodology

Platform simulation
Bandwidth and performance
Core model
Cache hierarchy
Interconnect model
Memory model

SCMP
4-thread, 8-thread, 4MB cache size
Core CPI: 0.85 ~ 1.5

LCMP
32-thread, 64-thread, 16MB cache size
Core CPI: 2 ~ 4.5

C

L1

C

L1

L2

L3

Memory

C

L1

C

L1

L2

Interconnect

C

L1

C

L1

L2

L3

Memory

C

L1

C

L1

L2

Interconnect

Performance for SCMP

Memory stall time is the dominant portion of CPI
(45~70%)
Memory utilization is low to high (18%~85%)
Benefit of 2x memory bandwidth is low (<5%)
Memory stall for SCMP is largely latency-dependent

8-Thread CPI and Memory Utilization

0

0.2

0.4

0.6

0.8

1

1.2

2 1.5 1 0.5 2 1.5 1 0.5

mem_bw=16GB/s mem_bw=32GB/s

Core Capability and Peak Memory Bandwidth

No
rm

al
iz

ed
 C

PI

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

M
em

or
y

ut
ili

za
tio

n

Core MLC LLC Mem Mem_utilization

4-Thread CPI and Memory Utilization

0

0.2

0.4

0.6

0.8

1

1.2

2 1.5 1 0.5 2 1.5 1 0.5

mem_bw=16GB/s mem_bw=32GB/s

Core Capability and Peak Memory Bandwidth

No
rm

al
iz

ed
 C

PI

0%

20%

40%

60%

80%

100%

120%

M
em

or
y

ut
ili

za
tio

n

Core MLC LLC Mem Mem_utilization

Performance for LCMP

Memory stall time is the dominant portion of CPI (40~90%)
Memory utilization is high (40%~100%)
Benefit of 2x memory bandwidth

32-thread: low to moderate
64-thread: is significant

Memory stall time is both bandwidth and latency-dependent

64-Thread CPI and Memory Utilization

0

0.2

0.4

0.6

0.8

1

1.2

5 4 3 2 1 5 4 3 2 1

mem_bw=32GB/s mem_bw=64GB/s

Core Capability and Peak Memory Bandwidth

No
rm

al
iz

ed
 C

P
I

0%

20%

40%

60%

80%

100%

120%

M
em

or
y

ut
ili

za
tio

n

Core MLC LLC Mem Mem_utilization

32-Thread CPI and Memory Utilization

0

0.2

0.4

0.6

0.8

1

1.2

5 4 3 2 1 5 4 3 2 1

mem_bw=32GB/s mem_bw=64GB/s

Core Capability and Peak Memory Bandwidth

N
or

m
al

iz
ed

 C
PI

0%

20%

40%

60%

80%

100%

120%

M
em

or
y

ut
ili

za
tio

n

Core MLC LLC Mem Mem_utilization

Emulation-based Methodology
DRAM cache study
Advantages

Speed and accuracy
Large workload coverage

Use FPGA-based cache emulator
LAI (logic analyzer interface)

Detect memory access
Send to Dragonhead

Dragonhead
Emulate cache behavior

Cache

 Controller

Cache

 Controller

Cache

 Controller

Address
Filter

Host

 Interface

Tag Memory

Tag Memory

Tag Memory

Tag Memory

System Under Test

Cache

 Controller

Dragonhead: FPGA Cache Emulator

Tektronix
LAI

Potential for DRAM cache

Miss rate reduces as we increase the cache size
Code access is the smallest component
Data write does not benefit from large cache
Data read is improved significantly

Analytical model on DRAM cache benefits
2x of bandwidth, 1/3 of latency
Improve the performance for SCMP significantly (35~45%)
Provide less benefit for LCMP (10~25%)

Miss Ratio Breakdown (64B)

0%

20%

40%

60%

80%

4 8 16 32 64 128 256
Cache Size (MB)

M
is

s
ra

tio

BRLD MISS %

BRIL MISS %
BRLC MISS %

DRAM Cache Performance Potential

1

1.1

1.2

1.3

1.4

4-Threads 8-Threads 32-Threads 64-Threads

SCMP LCMP

Pe
rf

or
m

an
ce

 S
pe

ed
up

64M
128M

DRAM cache is critical to LCMP by reducing memory utilization

Summary & Future Work
Presented SCMP and LCMP performance behavior
using SPECjbb2005
SPECjbb2005 performance depends heavily on
cache and memory performance
SCMP is more memory latency sensitive, LCMP is
more memory bandwidth sensitive
DRAM cache can provide 20 to 40% performance
improvement
Future work

Study other java workloads
In-depth evaluation on DRAM cache organization and
policies
New cache organizations

Acknowledgements

Michael LiaoMichael Liao
Wei A WeiWei A Wei

Qigang WangQigang Wang
Jaideep MosesJaideep Moses

For all the help with the emulator and simulator we
used in this study

Thank You

	Exploring Small-Scale and Large-Scale CMP Architectures for Commercial Java Servers
	Outline
	Motivation
	CMP Overview
	SCMP vs. LCMP
	Outline
	SPECjbb2005 Overview
	Outline
	Measurement-based Methodology
	Measurement Results
	Cache Scaling and Frequency Scaling
	Simulation-based Methodology
	Cache Scaling for SCMP & LCMP
	Simulation-based Methodology
	Performance for SCMP
	Performance for LCMP
	Emulation-based Methodology
	Potential for DRAM cache
	Summary & Future Work
	Acknowledgements
	Thank You

