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Motivation

CMP architecture has been widely adopted
SCMP: a few large out-of-order cores

Intel Dual-core Xeon processor
LCMP: many small in-order cores

Sun Niagara, Azul

Platform resources are different for S/LCMP
Cores, cache/memory architecture, memory 

How to make CMP evolve successfully 

Identify critical challenges in future CMP platforms by evaluating the performance
of a commercial  server workload on current and future CMP platforms



CMP Overview

SCMP: few large cores
Provide significant hardware features

out-of-order execution, complex branch prediction
Single-thread performance is high

LCMP: many small cores
Strip out area- and power-intensive features

In order execution, simple branch prediction 
Provide high throughput
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SCMP vs. LCMP

Cache scaling
Cache space is smaller for LCMP than for SCMP
Important to analyze and compare cache behavior

Memory bandwidth requirement
Higher for LCMP than for SCMP
Memory technology trend

DDR bandwidth and latency trends do not scale at 
the same pace as the bandwidth requirements for 
SCMP

Study bandwidth requirement
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SPECjbb2005 Overview
SPEC's benchmark for evaluating the performance of server side Java 
applications
Emulate a 3-tier client/server system on a single platform

client, business logic, database
The system modeled is a wholesale company, with warehouses that serve a number 
of districts.

Warehouse
Contain 25MB of data (Java Collection objects)
Database tables (Java classes), data records (Java objects)

Six types of transactions against the warehouse
New Order, Order Status, Payment, Delivery, Stock level, Customer Report 

Self contained and self driving
Generate its own data, multi-threaded operations, depend on no other package 
beyond the JRE

Memory resident
local network I/O, no I/O to disk

Exercise implementations of the JVM, JIT, garbage collector and threads
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Measurement-based Methodology

Intel’s dual-core dual-socket server platform
Two Intel Core 2 Duo processors

Each processor consists of two cores (3GHz)
4M L2 cache

4 FBD channels (533 MT/s) with peak bw @ 
25.6GB/s

EMON (Intel performance monitoring tool)
Study the performance scaling characteristics

Number of cores, number of sockets, cache size



Measurement Results

1S2C does not achieve the same performance 
improvement as 2S2C

LLC sharing (MPI increased by 23%)
Speedup is close to perfect when going from 1S to 
2S while keeping cores/socket constant

Processor Scaling 1S1C 1S2C 2S2C 2S4C
Throughput- Scaling 1.00 1.56 1.81 2.89
CPI 1.03 1.32 1.14 1.38
Pathlength 85,942 86,163 86,104 88,368
MPI 0.0031 0.0039 0.0032 0.0039
Time Spent in GC 1.83% 2.38% 2.86% 4.28%



Cache Scaling and Frequency Scaling

Use 2S4C, vary the LLC size
~30 to 40% improvement when double the cache size
Coherence / sharing behavior 

HIT(M)%: % of misses finding line in other cache in S/E(M) state
HITM% is very low, HIT% decreases as we increase cache size

There is little sharing between SPECjbb2005 threads
Use 2S4C, vary the frequency

25% improvement when frequency is increased by 50%
The speedup is limited by CPI increase

Cache Scaling 1M 2M 4M
Throughput-Scaling 1.00            1.30            1.80            
Pathlength 87,296 87,927 88,368
CPI 2.52 1.93 1.38
MPI 0.0087 0.0063 0.0039
HIT% 6% 4% 3%
HITM% 0% 0% 0%

Frequency-GHz 2 2.67 3
Throughput-Scaling 1.00 1.19 1.25
Pathlength 88,126 88,061 88,368
CPI 1.16 1.29 1.38
MPI 0.0039 0.0039 0.0039



Simulation-based Methodology

Cache simulator
Study the impact of scaling threads and cache 
size
SCMP

4/8 threads per processor socket
1M ~ 16M

LCMP
32/64 threads per processor socket
4M ~ 32M

Focus on LLC
MPI: misses per instruction



Cache Scaling for SCMP & LCMP

MPI decreases constantly
MPI stays relatively constant as the number of threads and 
cache size scales proportionally
MPI breakdown

Code MPI is negligible
Write MPI is relatively constant
Read MPI varies as a function of cache size

SPECjbb2005 Cache Scaling
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Simulation-based Methodology

Platform simulation 
Bandwidth and performance
Core model
Cache hierarchy
Interconnect model
Memory model

SCMP
4-thread, 8-thread, 4MB cache size
Core CPI: 0.85 ~ 1.5

LCMP
32-thread, 64-thread, 16MB cache size
Core CPI: 2 ~ 4.5

C

L1

C

L1

L2

L3

Memory

C

L1

C

L1

L2

Interconnect

C

L1

C

L1

L2

L3

Memory

C

L1

C

L1

L2

Interconnect



Performance for SCMP

Memory stall time is the dominant portion of CPI 
(45~70%)
Memory utilization is low to high (18%~85%)
Benefit of 2x memory bandwidth is low (<5%)
Memory stall for SCMP is largely latency-dependent

8-Thread CPI and Memory Utilization

0

0.2

0.4

0.6

0.8

1

1.2

2 1.5 1 0.5 2 1.5 1 0.5

mem_bw=16GB/s mem_bw=32GB/s

Core Capability and Peak Memory Bandwidth

No
rm

al
iz

ed
 C

PI

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

M
em

or
y 

ut
ili

za
tio

n

Core MLC LLC Mem Mem_utilization

4-Thread CPI and Memory Utilization
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Performance for LCMP

Memory stall time is the dominant portion of CPI (40~90%)
Memory utilization is high (40%~100%)
Benefit of 2x memory bandwidth

32-thread: low to moderate
64-thread: is significant

Memory stall time is both bandwidth and latency-dependent

64-Thread CPI and Memory Utilization
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32-Thread CPI and Memory Utilization
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Emulation-based Methodology
DRAM cache study
Advantages

Speed and accuracy
Large workload coverage

Use FPGA-based cache emulator
LAI (logic analyzer interface)

Detect memory access
Send to Dragonhead

Dragonhead
Emulate cache behavior
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Potential for DRAM cache

Miss rate reduces as we increase the cache size
Code access is the smallest component
Data write does not benefit from large cache
Data read is improved significantly

Analytical model on DRAM cache benefits
2x of bandwidth, 1/3 of latency
Improve the performance for SCMP significantly (35~45%)
Provide less benefit for LCMP (10~25%)

Miss Ratio Breakdown (64B)
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Summary & Future Work
Presented SCMP and LCMP performance behavior 
using SPECjbb2005
SPECjbb2005 performance depends heavily on 
cache and memory performance
SCMP is more memory latency sensitive, LCMP is 
more memory bandwidth sensitive
DRAM cache can provide 20 to 40% performance 
improvement 
Future work

Study other java workloads
In-depth evaluation on DRAM cache organization and 
policies
New cache organizations
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