Clusbench
Clustering Application Benchmark

Oğuz Altun
Nilgün Dursunoğlu
M.Fatih Amasyalı
{oguz, mfatih}@ce.yildiz.edu.tr
nilgunerd@garanti.com.tr

YILDIZ TECHNICAL UNIVERSITY
COMPUTER ENGINEERING DEPT.
TURKEY
The Benchmark

• Clusbench measures and outputs total and individual run times of six related clustering algorithms.
What is clustering?

• The clustering algorithms’ aim is to find clusters from unlabeled data.

• A cluster is a collection of objects which are “similar” to each other and are “dissimilar” to the objects that belong to the other clusters.

• Clustering algorithms have quite a number of application areas.
Example Application Areas

• Web domain:
 – Classifying web documents.
 – Discovering groups of similar access patterns from log data.

• Compression:
 – Reducing the number of colors in images. Similar colors are represented with a single colors.

• Marketing applications:
 – The customer groups with similar behavior are found by clustering customer properties and past buying records.

• The list goes on: Biology, city planning, earthquake studies, …
K-Means

• K-Means is probably the most widely used general clustering algorithm.
• Steps can be summarized as
 – Start by K random initial cluster centers,
 – Until cluster centers stop moving, iterate:
 • Reassign each object to the cluster with the closest center
 • Recalculate the position of cluster centers
SOM

• SOM is an artificial neural network model that can be used for clustering.
• It was first described by Teuvo Kohonen.
• It is especially good for visualizing high-dimensional data.
• To get consistent benchmark results on each run, our K-Means and SOM versions are modified to
 a) start with deterministic initial cluster centers,
 b) stop after given number of iterations.
Algorithms in Clusbench

• The algorithms in Clusbench are slightly modified versions of K-Means and SOM:
 – K-Means online
 – K-Means batch (Standard K-Means)
 – SOM-1D
 – SOM-2D
 – Hierarchical K-Means online
 – Hierarchical SOM-1D

• Details of the algorithms can be found in the proceedings and in the MS Thesis of Nilgun Dursunoglu
Benchmark Code

- Benchmark code is written in ANSI C.
- All the library code is in a single header file (clusbenc.h).
- Hence it can easily be integrated with other C/C++ benchmark codes.
- A supplied C program (clusbenc.c) serves
 a) as a standalone benchmark application,
 b) as an example of the library usage.
Default Input Data Set

• By default, clusbenc.c uses an input dataset extracted from 920 Turkish news texts. Hence it has 920 rows.

• Each cell in a row shows the passing count of a word in the corresponding document. 11954 words are counted. Hence the dataset has 11954 columns.

• The dataset consists from 4 classes (economy, sport, politics, popular).
Using Different Dataset

• One can easily supply his/her own input dataset.

• Clusbench expects a .dst file as input.
The .dst File format

• The .dst file format is for storing two dimensional arrays of real values.
• First value in the file is the number of rows.
• Second value is number of columns.
• The rest are the row by row element values of the array.
• Values must be separated by white space.
• Only numbers and white space are allowed.
Portability Issues

• Only ANSI C functions are used in the code.
• All file names are in the 8.3 naming convention in case operating system has such restriction.
• The code is small in size, and easy to build:
 – On Unix like systems: cd to the directory, run “make”, then run “./clusbenc”
 – On other systems: open clusbenc.c in your IDE, compile, and run.
Tested Platforms and Results

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Operating System</th>
<th>Compiler</th>
<th>Time (Second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Pentium 4 CPU 3.00GHz</td>
<td>MS. WIN. XP PRO</td>
<td>MS. Visual Studio 2005 Professional</td>
<td>16.391</td>
</tr>
<tr>
<td>504 MB RAM</td>
<td>version 2002 SP2</td>
<td>Edition, Debug mode</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>MS. Visual Studio 2005 Professional</td>
<td>11.578</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Edition, Release Mode</td>
<td></td>
</tr>
<tr>
<td>Intel Xeon MP CPU 3.66 GHz</td>
<td>Suse Linux 9.3</td>
<td>MS. Visual C++ 6.0, debug mode</td>
<td>17.906</td>
</tr>
<tr>
<td>3.95 GB RAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Pentium 4 CPU 1.70 GHz</td>
<td>Debian Linux Sid</td>
<td>Borland C++ Builder Enterprise Suite, Version 6</td>
<td>16.844</td>
</tr>
<tr>
<td>440 MB RAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>GCC 3.4.2, thread model win32</td>
<td>15.969</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>GCC 3.4.2, thread model win32, with best</td>
<td>15.845</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>optimization</td>
<td></td>
</tr>
<tr>
<td>Intel Xeon MP CPU 3.66 GHz</td>
<td>Suse Linux 9.3</td>
<td>GCC 3.3.5, thread model posix</td>
<td>15.720</td>
</tr>
<tr>
<td>3.95 GB RAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Pentium 4 CPU 1.70 GHz</td>
<td>Debian Linux Sid</td>
<td></td>
<td>36,260</td>
</tr>
<tr>
<td>440 MB RAM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Availability

- Clusbench will be integrated into MineBench Benchmark Suite.
- It is still available standalone at www.yildiz.edu.tr/~oaltun/clusbench/html/
Questions?

Thank you!

Please direct your questions to Oğuz Altun
oguz@ce.yildiz.edu.tr