

Michela Becchi is with the Computer Science and Engineering

Department, Washington University in St. Louis, St. Louis, MO 63130

USA (phone: 314-935-4306; fax: 314-935-7302; email:

mbecchi@cse.wustl.edu).

Mark Franklin is with the Computer Science and Engineering

Department, Washington University in St. Louis, St. Louis, MO 63130

USA (email: jbf@cse.wustl.edu).

Patrick Crowley is with the Computer Science and Engineering

Department, Washington University in St. Louis, St. Louis, MO 63130

USA (email: pcrowley@cse.wustl.edu).

Abstract—High-speed content inspection of network

traffic is an important new application area for

programmable networking systems, and has recently led to

several proposals for high-performance regular expression

matching. At the same time, the number and complexity of

the patterns present in well-known network intrusion

detection systems has been rapidly increasing. This

increase is important since both the practicality and the

performance of specific pattern matching designs are

strictly dependent upon characteristics of the underlying

regular expression set. However, a commonly agreed upon

workload for the evaluation of deep packet inspection

architectures is still missing, leading to frequent unfair

comparisons, and to designs lacking in generality or

scalability.

In this paper, we propose a workload for the evaluation

of regular expression matching architectures. The

workload includes a regular expression model and a traffic

generator, with the former characterizing different levels

of expressiveness within rule-sets and the latter

characterizing varying degrees of malicious network

activity. The proposed workload is used here to evaluate

designs (e.g., different memory layouts and hardware

organizations) where the matching algorithm is based on

compressed deterministic and non deterministic finite

automata (DFAs and NFAs).

I. INTRODUCTION

Network packets are increasingly classified not only by the

fields of their headers, but also by the content of their

payloads. This trend has been driven by a desire to detect and

remove malicious messages such as viruses from interfering

with network and system operation. Software tools that provide

signature-based deep packet inspection include Snort [4][5],

Bro [6] and ClamAV [7] and hardware-based devices for these

inspections include the Cisco family of Security Appliances [8]

and the Citrix Application Firewall[9].

The need for line-rate inspection of network traffic has led

to several recent proposals for high performance regular

expression matching [12]-[16][18]-[20][22]-[25]. While

regular expressions have been extensively studied and there

exists a well-known theory concerning complexity and

efficiency [1]-[3], deep packet inspection imposes two

requirements on regular expression evaluation which

distinguish this domain from the well-established theory.

 First, the operation has to be performed at line rate,

currently in the range of several gigabits per second (Gbps).

Second, huge pattern-sets consisting of hundreds or thousands

of regular expressions must be matched. The design of a

pattern matching architecture must focus on two issues:

processing time and memory requirements (i.e., the space

needed to store the finite automata). These issues are often

closely coupled: compact data structures can be accommodated

on smaller and therefore faster memories, and are likely to

exhibit better cache behavior.

In the past several years, publicly available pattern-sets have

increased both in size and complexity. Exact-match strings

have been progressively replaced by patterns containing

character ranges, wildcards, and Perl-compatible regular

expressions. These changes have two consequences. First,

extremely large data structures, sometimes in the range of

gigabytes, are required to accommodate current rule-sets.

Second, many solutions described in previous work only

address restricted regular expression classes (e.g.: exact-match

strings) and are not suitable for more complex and general

patterns. Since proposals in the research literature have

appeared in the midst of changing rule-set characteristics, it is

often difficult to judge whether a previously proposed solution

still has relevance for contemporary workloads.

To see why this is important, we note that DFAs have been

used extensively to perform regular expression matching,

particularly in recent research papers, because they require

processing time linear in the number of input characters,

independent of the number of patterns to be matched. In

particular, compression techniques to reduce the memory space

A Workload for Evaluating Deep Packet

Inspection Architectures

Michela Becchi, Mark Franklin, Fellow, IEEE, and Patrick Crowley

79978-1-4244-2778-9/08/$25.00 ©2008 IEEE

required to store DFAs have been recently proposed [15][19].

However, a single DFA is impractical if the pattern-set

contains simple wildcard repetitions [20] since an excessive

number of states is now required to encode the DFA.

Therefore, solutions using a single DFA are only applicable

either on simple regular expressions not containing wildcard

repetitions, or on small pattern sets containing at most a dozen

generic regular expressions. Unfortunately, this consideration

is often omitted in the literature.

A critical element missing from the computer and

networking systems community is an accepted, standard

workload that allows for a fair comparison between different

regular expression data structures and architectures. The

workload should consist of two parts: a regular expression

model and a traffic model. The former is needed to evaluate

the size and the complexity of the required data structures, and

the latter to assess the performance of the design under

different types of network traffic (i.e., different degrees of

malicious activity). Additionally, since new virus detection

rules are continuously created, not only should the regular

expression model reflect the characteristics of current pattern-

sets, but it should also allow projections into the future.

In this work, we start by articulating the characteristics of

current real-world rule-sets. These observations are then used

to create a regular expression model that can be used to

generate synthetic rule-sets with varying characteristics

(Section II). In Section III, we describe in greater detail the use

of NFAs and DFAs to perform regular expression matching.

Note that NFAs have the important property that the number of

states in an NFA-based representation of a regular expression

does not exceed that of the number of characters in the pattern-

set; DFAs, on the other hand, can have a number of states that

is exponential in the number of pattern-set characters. In

Section IV we describe the traffic model created for our

workload. Since the performance of any design depends on the

concrete memory representation of the finite automaton, three

different memory layouts are discussed in Section V. In

Section VI, the regular expression engine is evaluated on a

single processor using different cache configurations. Section

VII briefly considers related work and Section VIII presents

our summary and conclusion.

All of the rule-sets and software described in this paper are

available as open-source at our website http://regex.wustl.edu.

II. THE REGULAR EXPRESSION MODEL

In this section, we first categorize the features used in regular

expressions found in publicly-available network intrusion

detection systems and anti-virus rule-sets. Using these features,

a synthetic regular expression set is developed that can be used

to generate synthetic patterns reflecting characteristics of real

world data.

A. Regular expression taxonomy

We begin by characterizing features found in regular

expressions derived from commonly used anti-viruses and

network intrusion detection systems.

Exact-match strings. Exact-match strings represent the

simplest patterns which may appear in a rule-set. An exact-

match string is a fixed size pattern which must occur in the

input text exactly as is. Rule-sets consisting only of exact-

match strings exhibit two important properties. First, DFA

based solutions [3] can be effectively used since their size is

dependent only upon the number of characters in the pattern set

(and do not exceed that of the corresponding NFA). Second,

optimizations based on hashing schemes can be exploited

[16][17].

Character sets and simple wildcards. Character sets are

found in regular expressions in two forms: either as [c1-cjckcl]

expressions, or as special cumulative symbols, namely \s, \d,

\w, \S, \D, \W. In the first case the set includes all characters

between c1 and cj, ck and c1. In the second case the set consists

of all space characters (\s), all digits (\d), all alphanumerical

characters (\w), and their complements (\S, \D, \W). A wildcard

(e.g., any character of the alphabet) is represented through a

non-escaped dot.

Clearly, these sub-patterns allow more expressive regular

expressions, each of them representing a set of exact-match

strings. In general, character sets and wildcards don’t allow the

direct application of the Aho-Corasick DFA construction

algorithm [3] and of hashing schemes [16][17]. However, at

the cost of increasing the size of the pattern-set, it is possible to

perform an exhaustive enumeration of the corresponding exact-

match strings and produce the simpler case that doesn’t violate

the two “Exact-Match” properties cited above.

Simple character repetitions. Simple character repetitions

appear in the form c+ and c*, c being any character of the

alphabet. Simple character repetitions still allow the size of the

DFA not to exceed the number of characters in the pattern-set.

However, in this case, using exhaustive enumeration to reduce

a regular expression to a set of exact match strings is not

possible since an infinite number of such strings exist.

Therefore, hashing schemes such as [16] and [17] are not

applicable.

Character sets and wildcard repetitions. Repetitions of

character sets and wildcards (also called dot-star terms)

introduce additional complexity. When several such regular

expressions are compiled together into a single DFA, the DFA

size may explode [20]. Thus, not only are hashing schemes not

applicable to this case, but a single DFA may not be a feasible

solution. A common technique is to cluster rules into multiple,

concurrent DFAs [14][25]. This reduces the memory footprint

in exchange for increased memory bandwidth; specifically, N

DFAs require an N-fold increase in memory bandwidth. As an

alternative, NFAs can be used, again trading off memory space

with memory bandwidth requirements.

Counting constraints. Counting constraints appear as

bounded repetitions of simple characters, sub-patterns,

80

TABLE 2: CHARACTERISTICS OF PRACTICAL DATA-SETS FROM SNORT, BRO AND CLAMAV.

Data-set

Reg

-Ex \x \x+ . .* [c1..cn] [c1..cn]* [^\n\r]* (sp)+ c+ c{n}

[c1..cn]

{n} .{n}

(sp)

{n}

OR-

exp

Snort1 22 4\s 13\s+ 4 2 3 10 8 4 0 0 0 1 5 46

Snort2 78 1\d

173\s+

28\d+ 1 18 1 1 81 0 0 2 1 0 0 0

Snort3 102

9\s

2\d

165\s+

99\d+

1\w+ 2 5 5 3 26 1 2 1 1 0 2 18

Snort4 468 4\s

77\s+

26\d+

1\S+ 14 38 5 9 468 7 3 0 11 3 7 87

Bro0.8 226 0 0 0 10 1399 0 0 0 0 0 0 0 8 0

Bro0.9 40 0 0 20 0 22 1 0 6 0 0 0 0 10 8

ClamAV 30411 0 0 0 1221 0 0 0 0 0 0 0 113 0 5

character sets and wildcards. Their upper bound may or may

not be constrained. In the case of simple characters and sub-

patterns having repetitions with a constrained upper bound, an

exhaustive enumeration of the corresponding exact-match

strings is possible with the implications seen above.

Particularly problematic, however, are counting constraints on

large character sets and wildcards. As highlighted in [14] [20],

they can lead to exponential state blow-up when performing

NFA-DFA transformation even on single regular expressions

compiled in isolation. With counting constraints, DFA-based

methods are infeasible. It is preferable to replace counting

constraints with unbounded repetitions and handle the value of

the counter separately [20].

B. Analysis of practical rule-sets

This section presents an analysis of real-world rule-sets. Our

objectives are three-fold. First, we verify that the feature set

above is comprehensive. Second, we evaluate the complexity

of practical rule-sets. Third, we derive a methodology for

building synthetic rule-sets. Synthetic rules are useful for

exploring the performance of competing approaches; they can

be constructed to both reflect real-world characteristics by

anonymizing existing rules and to explore characteristics not

yet found in existing rule-sets.

The regular expressions we study are extracted from Snort

[4][5] and Bro [6], two open-source network intrusion

detection systems, and from ClamAV [7], an anti-virus system

intended for email scanning on mail getaways. For ClamAV,

all the regular expressions from main.db database (August

2007) are considered. For Bro, the ex_web regular expressions

(version 0.8) and the sig-addendum patterns (version 0.9) are

considered. For Snort, all the rules available (versions 2.7,

November 2007) are included.

It should first be noted that 5,549 out of 8,536 Snort active

rules contain at least one Perl Compatible Regular Expression

(PCRE). However, half of those regular expressions contain

just counting constraints on wildcards that are better handled

using counters rather than through finite automata. Therefore,

those expressions were excluded from our analysis.

Furthermore, we note that within Snort, packet payload

inspection (requiring regular expression matching) is

performed only after packet header filtering. A useful

partitioning of the remaining set of Snort rules can therefore be

based on clusters of rules sharing the same header information.

As a result, Snort regular expressions are associated with one

of the following four header sets: 1) (tcp, $external_net, any,

$home_net, $http_ports), 2) (tcp, $home_net, any,

$external_net, 25), 3) (tcp, $home_net, any, $external_net,

any), and 4) (tcp, $home_net, any, $external_net, $http_ports).

The set of regular expressions can now be decomposed into

a number of exact-match sub-patterns separated by character

sets (single and repeated), wildcards (single and repeated),

counting constraints, and disjunctions of simple sub-patterns.

With this limited feature set, every regular expression can be

examined and aggregate feature statistics can be collected

including: minimum, maximum and average pattern length,

minimum, maximum and average exact-match sub-pattern

length, number of character sets and of their repetitions,

number of wildcards and dot-star terms, number of sub-pattern

repetitions, number of counting constraints (classified by type),

and number of disjunctions. The results are shown in Table 1

and Table 2.

As can be observed, Snort rule-sets are the most complex in

that they contain all the above sub-pattern types. Moreover,

note the high occurrence of wildcard and character range

TABLE 1: STATISTICS ON THE LENGTH OF REGULAR EXPRESSIONS AND

THEIR EXACT-MATCH SUB-PATTERNS FOR SEVERAL RULE-SETS.

Data-set

Reg

-Ex

Length Sub-pattern length

min max avg min max avg

Snort1 22 4 102 25.3 1 22 5

Snort2 78 11 101 33.6 1 28 6.2

Snort3 102 1 52 21.2 1 22 5

Snort4 468 4 393 27.9 1 46 10.1

Bro0.8 226 1 84 12.3 1 46 4.1

Bro0.9 40 4 45 19.4 1 43 11.3

ClamAV 30411 6 210 67.2 1 210 64.3

81

repetitions, which, as mentioned, cause state blow-up in the

corresponding DFAs. In particular, a dot-star expression

indicates that the separated sub-patterns must both appear in

the input text in the indicated order, whereas the frequently

occurring [^\n\r]* term adds the additional constraint of

belonging to the same line. Bro rules appear to be simpler,

even though they contain some dot-star terms and character

ranges. Finally, ClamAV regular expressions consist of relative

long exact-match sub-patterns occasionally separated by dot-

star conditions and counting constraints on wildcards.

Nearly all the regular expressions presented in the analyzed

rule-sets are covered by the above description. A small

exception consists of 70 Snort PCREs containing back

references, a specific Perl feature that is not part of the regular

expression definition. Given the above characterization of

regular expressions, we now derive a set of synthetic regular

expressions that may be used in performance analysis studies.

C. Generation of synthetic rule-sets

The above characterization was used in order to create a model

for generation of synthetic rule-sets. The parameters of the

model are the following:

• RE#: Number of regular expressions to be generated.

• min_length, max_length, avg_length: Minimum, maximum

and average regular expression length.

• f\s, f\d, f\w, f\S, f\D, f\W: Frequency of special character sets.

• f\s+, f\d+, f\w+, f\S+, f\D+, f\W+: Frequency of special character

set repetitions.

• f[c1..ck], f[c1..ck]+, f[^\n\r]*: Frequency of character set and

character set repetitions ([^\n\r]
* terms are treated

separately).

• f. , f.* : Frequency of wildcard and dot-star terms.

• fc+, f(sp)+: Frequency of simple character and sub-pattern

repetitions.

• fc{n}, f(sp){n}, f[c1..ck]{n}, f. {n}: Frequency of counting constraints

on simple characters, sub-patterns, character ranges and

wildcards.

• fOR: Frequency of disjunction sub-patterns.

• min_sp_length, max_sp_length, avg_sp_length: Minimum,

maximum and average exact-match sub-pattern length.

• SEM: Set of available exact-match sub-patterns.

The last two items are mutually exclusive. Regarding exact-

match sub-patterns, two different approaches are possible. In

the first, sub-patterns are automatically generated by

concatenating randomly selected characters with the length of

each sub-pattern being a random variable. This random

variable is either uniformly distributed between min_sp_length

and max_sp_length, or normally distributed with mean

avg_sp_length and variance dependent upon min_sp_length

and max_sp_length. A similar statistical approach can also be

applied to the character selection process thus allowing biasing

of the alphabet set used. The drawback of this method is that it

provides no direct control on whether the generated strings

have real meaning. A second approach, the one chosen for our

synthetic rule-sets, utilizes sub-patterns derived from real

world data-sets (e.g., segments of network protocols or URLs)

and collected into SEM.

Given the selected parameters, the regular expression

generator operates as follows. From RE# and the above

frequencies, the generator computes the set of available non-

exact match terms SNEM and the average number of non-exact

match terms per regular expression NNEM. The length of each

regular expression is randomly selected according to the length

parameters listed above. Each regular expression is built by

alternating an exact- and a non-exact-match sub-pattern. Those

patterns are randomly selected from SEM and SNEM according to

a uniform distribution. After selection, these two sets are

updated. The concatenation process stops upon reaching the

pre-computed regular expression length; several exact-match

patterns may be appended after insertion of NNEM non-exact

match terms in the same regular expression.

III. USING FINITE AUTOMATA TO PERFORM

REGULAR EXPRESSION MATCHING

High-speed regular expression matching systems are based on

either NFAs or DFAs. The theory for both constructing an

NFA for a given regular expression set and converting an NFA

into its DFA counterpart is well known [1]. However, in some

cases, NFA-DFA conversion can lead to state explosion,

leaving DFA-based solutions impractical [20]. In this paper we

focus on NFAs, since they allow us to explore pattern-sets with

arbitrary complexity without incurring unreasonable resource

requirements. However, for the sake of completeness, we

briefly discuss DFAs and compare the results obtained through

the use of the two automata.

A. Introduction to NFAs

In Figure 1(a) we represent an NFA accepting regular

expressions abcd, ab[a-z]e
+, bc

+
d.

*
a and bc

+
e, constructed in

1

5

9

13

2

6

10

14

3

7

11

15/4

4/1

8/2

12/3

0

a

a

a

[a-z]

b

b

b

b

c

c

c d

d

e

c

c

e

e

*

*

(a)

1

8

2

9

3

6

10

12/4

4/1

7/2

11/3

0

a

a

[abd-z]

b

b

c

c

d

d

e

c

e

*

*

5/1

e
e

e

(b)

Figure 1: NFA accepting RegEx: (1) abcd, (2) ab[a-z]e+, (3) bc+d.*a,

(4) bc+e. Accepting states are represented in gray (the number after

the slash indicates the accepted regular expression). The original NFA

is represented on the left, whereas its compressed form obtained by

collapsing common prefixes is shown on the right. State 0 has an

auto-loop since the match is not anchored to the beginning of the

input string, but may occur at any position.

82

the standard way [1]. To evaluate a representation, whether an

NFA, DFA, or other data structure, we must consider two

metrics: the amount of memory needed to store it and the

amount of memory bandwidth needed to operate it.

NFA size depends only on the number of characters in the

pattern-set. This is true even if some regular expressions

contain simple and repeated character ranges.

To find the operating memory bandwidth, we must

understand how the NFA works. The pattern matching

operation starts from the entry state 0, as shown in Figure 1. A

match is reported every time an accepting state (in gray) is

traversed. The characters in the input text are processed in

sequence, and all the outgoing transitions from the active state

labeled with the current input character are taken. Notice that,

since each state can have more than one transition on any given

character, many states can be active in parallel. We will call

these states the active set. Since every state traversal implies

one or more memory operations, the size of the active set gives

a measure of the memory bandwidth requirement and, in case

of sequential memory accesses, of the processing time.

As an example, let us process the input text abcda. The NFA

traversal will involve the following active set sequence

(accepting states are underlined).

() () () ()

() ()12,11,5,1,04,11,0

7,3,14,10,06,2,13,9,05,1,00

→→

→→→

ad

cba

In this case, the maximum active set size is 5, and the total

number of state traversals is 22. The worst case traversal often

reported in literature corresponds to an active set including all

the states in the NFA. Notice that this worst case is in practice

never achieved. As an example, state 1 can never be active

together with any of 2, 3, 4, 6, 8, 9, 10, 13, 14 and 15 as it is

entered upon a different input character.

In general the NFA for a given regular expression set is not

unique. However, given any NFA, it is possible to compute an

optimized representation of it by collapsing common paths

starting at the entry state. This can be done by applying a

variant of the NFA-DFA conversion algorithm detailed in [1].

Specifically, for every state, the optimization algorithm: (i)

expands only the characters upon which there is at least one

outgoing transition, (ii) avoids expanding self-transitions.

The compressed NFA obtained by applying the above

optimization to the NFA represented in Figure 1(a) is shown in

Figure 1(b). Note that the compressed variant is preferable for

two reasons. First, it has a smaller size, both in terms of the

number of states and transitions. Second, the active set size has

lower bounds thus resulting in a lower traversal time. In fact,

the input text abcda can be now processed through the

following active set sequence.

() () () ()

() ()11,10,1,04,10,0

3,9,02,8,01,00

→→

→→→

ad

cba

Notice that the maximum active set size has decreased to 4,

and the total number of state traversals to 16. For the

remainder of this paper we consider only compressed NFAs.

B. Introduction to DFAs

In a DFA, each state has one and only one outgoing transition

for each symbol of the alphabet. As a consequence, during

traversal the active set will always consist of a single state. The

interested reader can refer to [1] and [2] for the details about

DFA construction and operation.

As mentioned above and as discussed in [14] and [20],

pattern-sets containing complex regular expressions can make

a single DFA infeasible. State explosion may in fact take place

when converting the corresponding NFA into its deterministic

counterpart. This can be mitigated by clustering the rules into

groups and compiling them into distinct DFAs [14] [25]. As

will be shown in Section VI, this will increase the memory

bandwidth requirement, in that all the DFAs must be accessed

while processing every input character.

As will be discussed in Section VII, several techniques have

been proposed to reduce the memory space requirements of a

DFA. In this paper, we use the default transition based scheme

proposed in [19], which, to our knowledge, represents the most

effective DFA compression algorithm available. The scheme

reduces the number of transitions necessary to represent a DFA

at the cost of increasing the number of state traversals per

character (in the worst case, by a factor 2).

C. NFAs and DFAs from synthetic regular expression sets

The regular expression model discussed in Section II was

proposed to generate synthetic regular expression sets. We now

study how the characteristics of the pattern-set reflect on the

corresponding finite automata. In all cases, the length of the

regular expressions was uniformly distributed. Two length

ranges were considered, the first between 20 and 60 (selected

with probability ¾) and the second between 20 and 100

(selected with probability ¼).

The generated data-sets consist of 300 regular expressions

with increasing complexity (Figure 2). In the figure,

complexity increases left to right with the lowest complexity

regular expressions in this set containing only exact-match

terms, and the highest complexity regular expression

containing a high number of dot-star terms. In particular, the

second and the third expression sets contain character ranges

(randomly selected between the different \x and \x+ groups),

with average frequency of 0.5 and 1 per regular expression.

The last three expression sets contain, in addition to one

character range per regular expression, wildcard repetitions

(either in the .* or in the [^\r\n]* form) with average frequency

ranging from 0.3 to 0.9 per regular expression.

For the sake of completeness, we also generated the

corresponding DFAs. In the case of complex patterns, we

needed to perform regular expression clustering and generate

multiple DFAs (1, 2, 2, 14, 24, and 32 DFAs, going from the

leftmost to the rightmost pattern-set, respectively). In

particular, clustering was done by recursively bisecting the

pattern-set so to keep the size of each DFA below 100,000

states.

83

Three basic observations can be made. First, as expected,

the number of NFA states is similar across the different data-

sets (in that it depends only on the number and length of the

regular expressions). Second, the number of NFA transitions

increases with the pattern complexity. Third, the total number

of DFA states, especially in case of complex patterns, exceeds

by far that of NFA states and transitions. Applying the default

transition construction algorithm proposed in [19] to these sets

leads to 2-to-4 outgoing transitions per DFA state.

This illustrates how the workload model developed here can

be tuned to effectively reflect different types of regular

expression sets, and thus how one can explore new regular

expression sets that may be developed in the future in response

to new virus designs.

IV. THE TRAFFIC MODEL

To analyze performance, it is necessary to specify a traffic

model to direct the FA (either NFA or DFA) traversal. One

approach is to examine real Internet traffic and abstract from

this examination a “typical” subset of malicious traffic and

non-malicious traffic. This subset could then be used in

conjunction with the synthetic FA and an associated

architecture model to examine the effect of different

architecture parameters on performance. Another approach to

generating traffic is to embed in the synthetic FA a set of

probabilities associated with state transitions. Traffic

generation in this case involves traversing the FA by using a

random number generator and associated probability

distributions to determine movement from state to state. We

adopt the latter approach. In particular, we have created a

synthetic traffic generator that produces a plausible traffic

stream given an FA and a probability pM of experiencing

malicious traffic.

To understand the operation of the traffic generator, we must

first characterize good and bad traffic. Since regular expression

data-sets have the goal of detecting suspicious activities, at a

first glance an input stream may be considered malicious if it

matches some patterns in the rule-set. In reality, however, a

more dangerous attacker will harm the system by slowing down

or breaking its operation without being noticed.

NFA and DFA traversals tend to exhibit a high degree of

locality especially when guided by average traffic. In fact,

average traffic tends not to match any patterns and therefore

tends to limit the traversal to a restricted number of low-depth

states. This locality can be exploited in order to engineer high

performance packet inspection architectures, either by using

caches or, in the case of ASIC designs, by accommodating the

portions of the automata representing the fast path (i.e., the

most commonly traversed states) on fast on-chip memory.

Therefore, malicious traffic will force the system to operate on

its slow path by preventing traversal locality.

Ideally, bad traffic will cause random walks in the FA. Since

this goal is difficult to achieve, especially given the fact that

the FA structures are not known to the attacker, a malicious

strategy would be to send pieces of harmful traffic. As an

example, virus signatures can be easily found on the web and

in open source network intrusion and detection system (NIDS)

rule-sets. Also, the input stream should not be repetitive (since

this would foster traversal locality), and should avoid complete

matches (which would alarm the NIDS).

The goal of the traffic generator should now be clear. The

generated character stream should contain only partial matches,

and cause the traversal of as many FA states as possible. One

way to accomplish this is based on a simple observation made

above. For any given state, forward outgoing transitions (that

is, transitions directed toward deeper states) determine

progress in the match. Therefore, malicious traffic will tend to

follow forward transitions unless they lead to an accepting

state. This will also limit low-depth state traversals, which

dominate average traffic.

Since the FA traversal always starts at the entry state s0 and

since the FA is given to the traffic generator, the problem of

incrementally generating the input stream can be formulated as

follows: given the current set of active states, what is the next

character to be processed? At each step, either a forward

transition is taken with probability pM or a random character is

selected with probability 1- pM. If the decision is to follow a

forward transition, the selection of the specific transition (and,

as a consequence, of the corresponding character) happens as

follows. All the outgoing transitions from the active set are

considered, and the one leading to the deepest state is chosen.

If no forward transition is available, any character can be

randomly selected.

This basic operation can be refined in several ways to

simulate the behavior of more sophisticated attackers.

For example, observe that the model is memory-less and the

selection of the next transition is dependent only on the current

set of active states (i.e., a one step Markov chain) and is thus

oblivious to the characters already sent. Despite the use of

0

300,000

600,000

900,000

1,200,000

1,500,000

1,800,000

2,100,000

exact-
match

range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

s
iz

e
 (

#
)

pattern type

NFA states

NFA transitions

DFA states

DFA transitions

Figure 2: Number of states and transitions for pattern-sets with

increasing complexity (from exact match strings, to patterns with

character ranges and wildcard repetitions).

84

randomness, this may reproduce previously generated sub-

patterns. The traffic generator can be augmented with a history

buffer of configurable size that records the past state traversals,

making the exploration more selective.

The traffic generator is instrumented to produce streams of

random length between a user-specified minimum and

maximum value. In the simulations presented in Section VI,

those limits are set to 5KB and 1MB, to simulate traffic

ranging from small flows to file transfer operations.

V. MEMORY LAYOUT OPTIONS

An orthogonal design problem consists of selecting the

concrete data structure used to perform pattern matching; such

a data structure must account for every bit needed to represent

the NFA/DFA.

Given an alphabet Σ of cardinality |Σ| (256 in case of the

ASCII alphabet), a naive solution consists of representing a

state s as a list of |Σ| next state pointers. However, this

approach does not leverage the fact that most states have only a

restricted number of outgoing transitions.

Alternatively, we consider three different techniques to

encode the compressed FA: i) linear encoding, ii) bitmapped

encoding and iii) address indirection. These encoding schemes

access memory differently and thus differ in the number of

memory accesses required for each state traversal. While each

of these techniques can be tuned, for the sake of simplicity and

comparison we assume the use of a 32-bit word aligned

memory layout and avoid FA specific optimizations.

Note that an NFA state may have several outgoing

transitions on the same character, which may complicate the

memory layout. To avoid this, states with this characteristic are

split into multiple states connected through non-consuming

epsilon transitions. Every time a state s is activated, so are all

the states connected to s via an epsilon transition. This

approach, despite increasing the active set size, allows a

uniform NFA state representation.

A. Linear encoding

If linear encoding is used, a state with l transitions is encoded

through l+1 32-bit words with the first one representing the

epsilon/default, and the others the remaining transitions. Each

word has one bit indicating whether the transition is the last

one within the state, 8-bits representing the input character

upon which the transition must be taken, and the remaining bits

devoted to the next state address. A state traversal starts from

the first word, and involves going through the transitions in

sequence until the one matching the input character is found or

its absence is verified. When using linear addressing, a

threshold t is used. States having more that t outgoing

transitions are fully represented through |Σ|+1 pointers (and

accommodated in a separate memory region) to allow fast

access.

B. Bitmapped encoding

Bitmaps [12] admit a reasonable upper bound on the number of

memory accesses needed to process a character. Specifically,

in this context a bitmap is an array of |Σ| bits, each one

indicating whether the corresponding transition exists or not.

Each state is encoded through a bitmap and a sequence of l+1

memory words, each one representing a next state pointer.

Upon state traversal, the bitmap is first analyzed. If it contains

a 0 in the position of the input character, then only a direct

access to the epsilon/default transition is performed.

Otherwise, a pop-count of the number of 1s preceding the

current position is made, and this information is used to

directly access the proper next state transition.

Several techniques to compress bitmaps have been proposed

[27]. In this paper, we use a two level organization where a

first-level 32-bit bitmap is used to address a set of second-level

8-bit bitmaps. For sparse FAs, this scheme shows an acceptable

overhead. Furthermore, as in the linear encoding case, states

with a high number of outgoing transitions are fully encoded.

0

300

600

900

1,200

1,500

1,800

2,100

exact-
match

range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

M
e

m
o

ry
 s

iz
e
 (

in
 K

B
)
-

N
F
A

 s
o

lu
ti

o
n

Pattern type

linear

bitmapped

ind.addr-32 bit

ind.addr-64 bit

Figure 3: Memory size of the pattern-sets in Figure 2 using an NFA

with different memory representations.

0

5,000

10,000

15,000

20,000

25,000

30,000

exact-
match

range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

M
e
m

o
ry

 s
iz

e
 (
in

 K
B

)
-

D
F

A
 s

o
lu

ti
o

n

Pattern type

linear

bitmapped

ind.addr-32 bit

ind.addr-64 bit

1,800

Figure 4: Memory size of the pattern-sets in Figure 2 using DFAs

with different memory representations. Note the difference in scale

compared to Figure 3.

85

0

10

20

30

40

50

60

70

80

exact-match range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

M
a

x
im

u
m

 d
e
p

th
 r

e
a

c
h

e
d

 i
n

 N
F
A

Pattern-set

pM=0.35

pM=0.55

pM=0.75

pM=0.95

Figure 5: Effect of the traffic and the pattern-set on the maximum NFA

depth reached during traversal.

C. Indirect addressing

Indirect addressing, a generalization of the content addressing

scheme proposed in [18] for DFAs, can be used to further

reduce the number of memory accesses per state traversal.

With this approach each state is given an identifier consisting

of: i) the list of characters upon which there exists an outgoing

transition, and ii) a set of bits, called a state discriminator.

When a state is traversed, examining the state identifier can

determine whether a transition must be followed. Moreover,

the order of the characters in the state identifier is used in

performing a direct memory access.

The discriminator is introduced to ensure that all state

identifiers are different, even for states having labeled

transitions on the same set of characters. An indirection

operation, performed through hashing, is thus needed in order

to translate a state identifier into a memory address. Reference

[18] explains how to map state identifiers to memory addresses

in a manner that ensures good memory utilization.

In this paper, 8-bit discriminators are assumed. Two possible

configurations are allowed: i) 32-bit and ii) 64-bit state

identifiers. In the former case, states with more than 3 outgoing

transitions must be fully represented. In the latter case, this

limit is moved to 7 (as 4 more characters can be represented in

the additional 32 bits).

 Figures 3 and 4 show the memory size obtained by applying

the described memory representations to the pattern-sets from

Figure 2. In the case of linear and bitmapped layouts, the

threshold t was set to 50 outgoing transitions. As could be

expected, the linear encoding, requiring pointers only for

existing transitions, is the most compact representation.

Bitmapping adds the overhead for storing the bitmaps. Indirect

addressing suffers since many states exceed 3/7 outgoing

transitions and must therefore be fully represented. In

particular, this holds when wildcards and character ranges are

numerous, whereas the memory size is small in the case of

simple exact-match patterns. Finally, the memory footprints of

a DFA-based solution exceed by far those of an NFA

representation, especially as the complexity of the regular

expressions increases.

VI. EVALUATION AND DISCUSSION

In this section, we evaluate the regular expression matching

operation with different cache settings. In particular, we

perform our evaluation on the synthetically generated rule-sets

from Figure 2. To evaluate the traversal operation, we use the

traffic model presented in Section IV.

A. Methodology

The parameter space of our analysis is shown in Table 4. In

particular, grey cells highlight parameters for which a range of

settings have been tested. To perform this analysis, we created

a simulator that allows the evaluation of different cache

configurations and memory layouts. Specifically, given an

NFA/DFA and an encoding scheme, our tool generates the

corresponding memory layout (used in the previous section to

compute the memory footprint). Additionally, given an input

string and a memory layout, the simulator generates the

sequence of memory reads triggered during the traversal.

Those memory references are used as inputs to a cache

simulator in order to derive latency information.

0

10

20

30

40

50

60

exact-match range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

a
v

g
 s

ta
te

 t
ra

v
e

rs
a
s

/i
n

p
u

t
c

h
a
ra

c
te

r

Pattern-set

NFA, pM=0.35

NFA, pM=0.55

NFA, pM=0.75

NFA, pM=0.95

DFA, pM=0.35

DFA, pM=0.95

Figure 6: Effect of the traffic and the pattern-set on the average

number of state traversals per input character.

TABLE 3: PARAMETER SPACE USED IN THE EVALUATION.

 Parameter Values

Traffic pM 0.35, 0.55, 0.75, 0.95

Cache size 4 KB, 16KB, 64KB, 256KB

line 64B

associativity DM

hit latency 1 clock cycle

miss latency 30 clock cycles

Memory

layout

encoding linear, bitmapped,

ind. addr 32-bit, ind. addr. 64-bit

86

0

10

20

30

40

50

60

70

exact-match range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

#
 o

f
m

e
m

o
ry

 a
c

c
e

s
s
e

s
/i
n

p
u

t

Pattern-set

NFA, linear

NFA, bitmapped

NFA, ind. addr.32 bit

NFA, ind. addr. 64 bit

DFA, ind. addr. 32 bit

Figure 8: Effect of memory encoding on number of memory

accesses per input character, pM=0.95.

The cache size has been varied to cover values used on

general purpose processors as well as on embedded

multiprocessor architectures such as Tensilica Xtensa [28].

Traffic traces were generated using 10 different seeds and the

results were averaged.

In general, the evaluation metrics can be grouped into the

following categories:

- Traffic and finite automaton dependent: number of state

traversals/input character;

- Memory encoding dependent: memory size, number of

memory accesses per input character;

- Cache configuration dependent: cache hit rate, number of

clock cycles per input character.

We now consider some important results of our analysis.

B. Effect of complexity and malicious traffic

First of all, we want to analyze the impact of the traffic pattern

on the NFA/DFA traversal across the different pattern-sets. In

particular, Figures 5 and 6 highlight how the maximum depth

reached during the traversal and the average number of state

traversals per character change when pM increases. Recall that

high values of pM are used to model the likelihood of malicious

traffic.

As could be foreseen, higher values of pM force the traversal

into deeper areas of the NFA (the same has been observed in

the DFA case). More importantly, this parameter has a high

impact on the percentage of states involved in the pattern

matching operation: high values of pM imply less traversal

locality. In fact, our data show that the percentage of states

traversed increases with pM across all the pattern-sets, ranging

from about 3.9% to 30% when pM varies between 0.35 and

0.95. Moreover, NFAs outperform DFAs when the pattern

complexity increases. Finally, the number of DFA state

traversals is affected principally by the number of DFAs (pM

has an additional minor effect on the overhead due to following

default transitions).

C. Effect of memory encoding

As explained above, different memory encodings imply a

different number of memory accesses per state traversal. In

Figures 7 and 8 we study this effect across pattern-sets. In

particular, we show the results for the minimum and maximum

0

10

20

30

40

50

60

70

exact-match range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

#
 o

f
m

e
m

o
ry

 a
c
c

e
s

s
e

s
/i
n

p
u

t

Pattern-set

NFA, linear

NFA, bitmapped

NFA, ind.addr. 32 bit

NFA, ind.addr. 64 bit

DFA, ind. addr 32 bit

Figure 7: Effect of memory encoding on number of memory accesses

per input character, pM=0.35.

0

50

100

150

200

250

300

350

exact-match range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

a
v

g
 c

lo
c

k
 c

y
c

le
s

/i
n

p
u

t

Pattern-set

NFA, 4KB cache size

NFA, 16 KB cache size

NFA, 64 KB cache size

NFA, 256 KB cache size

DFA, 256 KB cache size

Figure 9: Effect of cache size on performance – linear encoding,

pM=0.95

0

50

100

150

200

250

300

350

exact-match range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

a
v
g

 c
lo

c
k

 c
y

c
le

s
/i
n

p
u

t

Pattern-set

NFA, 4 KB cache size

NFA, 16 KB cache size

NFA, 64 KB cache size

NFA, 256 KB cache size

DFA, 256 KB cache size

Figure 10: Effect of cache size on performance – indirect addressing

(32 bit), pM=0.95

87

values of pM considered so far, namely 0.35 and 0.95.

As a general observation, the curves follow the same trends

as found in Figure 6. In the case of linear addressing, the need

for sequentially accessing the state transitions introduces an

overhead. In the case of bitmapping, the overhead is due to the

need for querying the bitmap.

As can be observed, the indirect address encoding with 32-

bit identifiers has the best behavior. In fact, it requires only one

memory access per state (note that in the case of epsilon

transitions two accesses may be needed). Indirect addressing

with 64-bit state identifiers doubles the number of needed

memory accesses. In the case of bitmapping, the overhead

introduced when accessing the bitmap does not justify its use

compared to a simple and more compact linear encoding

approach. Finally, for complex patterns even the best DFA

representation (32-bit indirect addressing) leads to far worse

results than the NFA counterpart, especially in the case of

average traffic (low pM).

D. Cache dependent results

Finally, we evaluate the performance of the design with

different cache settings. In Figures 9 and 10 we report the

average number of clock cycles per input character in the case

of malicious traffic (pM equal to 0.95). We consider two

encodings: indirect addressing with 32-bit identifiers and linear

encoding. In fact, the former minimizes the number of memory

accesses per character and the latter has the smallest memory

footprint.

Again, the trend of the curves can be compared with that in

Figure 8. We can observe that, in case of NFAs, a 64KB cache

is enough to ensure about one clock cycle per memory access.

In fact, a 64KB cache guarantees a hit rate in excess of 98%

for both encodings. However, for small cache sizes (e.g. 4KB)

the performance of linear encoding approaches that of indirect

addressing. In fact, the small memory footprints of the linear

layout allow a higher hit rate which compensates for the worse

behavior in terms of the number of memory accesses per

character. The largest memory footprints of a DFA solution

make a 256KB cache necessary to achieve acceptable

performance (comparable to a NFA with 16KB-64KB cache).

VII. RELATED WORK

Regular expression matching at line rate has been recognized

as an important problem and has been considered in related

work. Prior work in this area takes two generally distinct

directions: FPGA based implementations [22]-[25] and

approaches suitable for deployment on a general purpose

processor or on ASIC hardware [12]-[16][19][25]. Our work

has the goal of proposing an evaluation methodology for the

second class of solutions. We address the reader interested in

benchmarking and evaluation of FPGA based designs to the

work by Clark and Schimmel presented in [26].

A substantial body of research work focused on compression

techniques aiming at reducing the amount of memory needed to

represent DFAs. In particular, Kumar et al. [15] proposed an

algorithm to compress a DFA through the introduction of

default transitions. Their work is based on the idea of trading

of memory storage requirement with processing time. A more

general and less complex algorithm to achieve the same goal

has been recently proposed by Becchi et al. [19]. By allowing

only backward directed default transitions, a better memory

bandwidth requirement is achieved with the same compression

degree of [15].

A different category of compression techniques based on the

concept of hashing and on probabilistic data structures such as

Bloom Filters are proposed in [16] and [17]. However, it must

be stressed that those techniques are applicable only to exact-

match strings, or to regular expression classes which allow an

exhaustive enumeration of the underlying patterns. As seen,

none of the practical data-sets analyzed in Section II exhibits

those characteristics.

Finally, a fair comparison of NFA based designs is missing.

This work provides evaluations of such designs.

VIII. CONCLUSION

This paper introduces a benchmark and workload for the

evaluation of regular expression architectures. We provide an

objective workload and methodology for the fair evaluation of

deep packet inspection (DPI) architectures. Our approach

incorporates real-world regular expression rule-sets drawn

from popular network security systems, along with a procedure

for generating synthetic rule-sets, which can be used to explore

how a given representation for regular expressions may be

sensitive to changing rule characteristics. Our goal is to

accelerate the design of superior regular expression data

structures, algorithms, and architectures by providing an open-

source evaluation framework.

The primary contribution of this paper lies in the analysis of

real-world rules and in the construction of the benchmark and

evaluation framework. Additionally, our analysis illustrates

that NFA-based solutions are far more practical than previous

work has suggested.

In this paper, we used the workload to perform a thorough

evaluation of DFA- and NFA-based solutions on a processor –

based architecture making use of caches. The analysis shows

how different factors contribute to the performance of the

regular expression matching architecture. Specifically, the

behavior of the system depends on: the complexity of the

underlying pattern-set, the amount of malicious activity in the

traffic, the memory encoding scheme and cache size.

Finally, all of the data and software needed to recreate the

results presented in this paper are available as an open-source

software distribution at http://regex.wustl.edu.

ACKNOWLEDGEMENTS

This work has been supported by National Science Foundation

grants CCF-0430012 and CCF-0427794.

88

REFERENCES

[1] J. E. Hopcroft and J. D. Ullman, “Introduction to

Automata Theory, Languages, and Computation”, Addison

Wesley, 1979.

[2] J. Hopcroft, “An nlogn algorithm for minimizing states in

a finite automaton”, in Theory of Machines and

Computation, J. Kohavi, Ed. New York: Academic, 1971,

pp. 189-196.

[3] A. V. Aho and M. J. Corasick, “Efficient String Matching:

An Aid to Bibliographic Search”, in Communications of

the ACM, 1975.

[4] M. Roesch, “Snort: Lightweight Intrusion Detection for

Networks”, in System Administration Conf., 1999

[5] Snort: http://www.Snort.org/

[6] Bro: http://bro-ids.org/

[7] ClamAV: http://www.clamav.net/

[8] Cisco Systems. Cisco ASA 5505. http://www.cisco.com.

2007.

[9] Citrix Systems. Citrix Appl. Firewall.

http://www.citrix.com. 2007.

[10] Vern Paxson et al., “Flex: A fast scanner generator”,

http://www.gnu.org/software/flex/

[11] R. Sommer and V. Paxson, “Enhancing byte-level network

intrusion detection signatures with context”, in CCS 2003.

[12] N. Tuck et al., “Deterministic memory-efficient string

matching algorithms for intrusion detection”, in Infocom

2004.

[13] L. Tan and T. Sherwood, “A High Throughput String

Matching Architecture for Intrusion Detection and

Prevention”, in ISCA 2005.

[14] F. Yu et al., “Fast and Memory-Efficient Regular

Expression Matching for Deep Packet Inspection”, in

ANCS 2006

[15] S. Kumar et al., “Algorithms to Accelerate Multiple

Regular Expressions Matching for Deep Packet

Inspection”, in ACM SIGCOMM 2006.

[16] S. Dharmapurikar and J. Lockwood, “Fast and Scalable

Pattern Matching for Content Filtering”, in ANCS 2005

[17] S. Kumar et al., “HEXA: Compact Data Structures for

Faster Packet Processing”, in ICNP 2007

[18] S. Kumar et al., “Advanced Algorithms for Fast and

Scalable Deep Packet Inspection”, in ANCS 2006

[19] M. Becchi and P. Crowley, “An Improved Algorithm to

Accelerate Regular Expression Evaluation”, in ANCS

2007

[20] M. Becchi and P. Crowley, “A Hybrid Finite Automaton

for Practical Deep Packet Inspection”, in CoNEXT 2007

[21] R. W. Floyd, and J. D. Ullman, “The Compilation of

Regular Expressions into Integrated Circuits”, in Journal

of ACM, vol. 29, 1982.

[22] R. Sidhu and V. K. Prasanna, "Fast Regular Expression

Matching using FPGAs", in FCCM 2001

[23] C.R. Clark and D.Schimmel, “Efficient reconfigurable

logic circuit for matching complex network intrusion

detection patterns,” in FLP 2003.

[24] J. Moscola et al., “Implementation of a content-scanning

module for an internet firewall,” in FCCM 2003.

[25] B. Brodie et al., “A Scalable Architecture For High-

Throughput Regular-Expression Pattern Matching,” in

ISCA 2006.

[26] C. R. Clark et al., “Modeling the Data-Dependent

Performance of Pattern-Matching architectures”, in FPGA

2006

[27] G. Varghese, “Network Algorithms: An Interdisciplinary

Approach to Designing Fast Networked Devices”, Morgan

Kaufmann, 2004.

[28] http://www.tensilica.com

89

