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Abstract—High-speed content inspection of network 

traffic is an important new application area for 

programmable networking systems, and has recently led to 

several proposals for high-performance regular expression 

matching. At the same time, the number and complexity of 

the patterns present in well-known network intrusion 

detection systems has been rapidly increasing. This 

increase is important since both the practicality and the 

performance of specific pattern matching designs are 

strictly dependent upon characteristics of the underlying 

regular expression set. However, a commonly agreed upon 

workload for the evaluation of deep packet inspection 

architectures is still missing, leading to frequent unfair 

comparisons, and to designs lacking in generality or 

scalability. 

In this paper, we propose a workload for the evaluation 

of regular expression matching architectures. The 

workload includes a regular expression model and a traffic 

generator, with the former characterizing different levels 

of expressiveness within rule-sets and the latter 

characterizing varying degrees of malicious network 

activity. The proposed workload is used here to evaluate 

designs (e.g., different memory layouts and hardware 

organizations) where the matching algorithm is based on 

compressed deterministic and non deterministic finite 

automata (DFAs and NFAs). 

I. INTRODUCTION 

Network packets are increasingly classified not only by the 

fields of their headers, but also by the content of their 

payloads. This trend has been driven by a desire to detect and 

remove malicious messages such as viruses from interfering 

with network and system operation. Software tools that provide 

signature-based deep packet inspection include Snort [4][5], 

Bro [6] and ClamAV [7] and hardware-based devices for these 

inspections include the Cisco family of Security Appliances [8] 

and the Citrix Application Firewall[9]. 

The need for line-rate inspection of network traffic has led 

to several recent proposals for high performance regular 

expression matching [12]-[16][18]-[20][22]-[25]. While 

regular expressions have been extensively studied and there 

exists a well-known theory concerning complexity and 

efficiency [1]-[3], deep packet inspection imposes two 

requirements on regular expression evaluation which 

distinguish this domain from the well-established theory. 

 First, the operation has to be performed at line rate, 

currently in the range of several gigabits per second (Gbps). 

Second, huge pattern-sets consisting of hundreds or thousands 

of regular expressions must be matched. The design of a 

pattern matching architecture must focus on two issues: 

processing time and memory requirements (i.e., the space 

needed to store the finite automata). These issues are often 

closely coupled: compact data structures can be accommodated 

on smaller and therefore faster memories, and are likely to 

exhibit better cache behavior. 

In the past several years, publicly available pattern-sets have 

increased both in size and complexity. Exact-match strings 

have been progressively replaced by patterns containing 

character ranges, wildcards, and Perl-compatible regular 

expressions. These changes have two consequences. First, 

extremely large data structures, sometimes in the range of 

gigabytes, are required to accommodate current rule-sets. 

Second, many solutions described in previous work only 

address restricted regular expression classes (e.g.: exact-match 

strings) and are not suitable for more complex and general 

patterns. Since proposals in the research literature have 

appeared in the midst of changing rule-set characteristics, it is 

often difficult to judge whether a previously proposed solution 

still has relevance for contemporary workloads. 

To see why this is important, we note that DFAs have been 

used extensively to perform regular expression matching, 

particularly in recent research papers, because they require 

processing time linear in the number of input characters, 

independent of the number of patterns to be matched. In 

particular, compression techniques to reduce the memory space 
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required to store DFAs have been recently proposed [15][19]. 

However, a single DFA is impractical if the pattern-set 

contains simple wildcard repetitions [20] since an excessive 

number of states is now required to encode the DFA. 

Therefore, solutions using a single DFA are only applicable 

either on simple regular expressions not containing wildcard 

repetitions, or on small pattern sets containing at most a dozen 

generic regular expressions. Unfortunately, this consideration 

is often omitted in the literature. 

A critical element missing from the computer and 

networking systems community is an accepted, standard 

workload that allows for a fair comparison between different 

regular expression data structures and architectures. The 

workload should consist of two parts: a regular expression 

model and a traffic model. The former is needed to evaluate 

the size and the complexity of the required data structures, and 

the latter to assess the performance of the design under 

different types of network traffic (i.e., different degrees of 

malicious activity). Additionally, since new virus detection 

rules are continuously created, not only should the regular 

expression model reflect the characteristics of current pattern-

sets, but it should also allow projections into the future.  

In this work, we start by articulating the characteristics of 

current real-world rule-sets. These observations are then used 

to create a regular expression model that can be used to 

generate synthetic rule-sets with varying characteristics 

(Section II). In Section III, we describe in greater detail the use 

of NFAs and DFAs to perform regular expression matching. 

Note that NFAs have the important property that the number of 

states in an NFA-based representation of a regular expression 

does not exceed that of the number of characters in the pattern-

set; DFAs, on the other hand, can have a number of states that 

is exponential in the number of pattern-set characters. In 

Section IV we describe the traffic model created for our 

workload. Since the performance of any design depends on the 

concrete memory representation of the finite automaton, three 

different memory layouts are discussed in Section V. In 

Section VI, the regular expression engine is evaluated on a 

single processor using different cache configurations. Section 

VII briefly considers related work and Section VIII presents 

our summary and conclusion. 

All of the rule-sets and software described in this paper are 

available as open-source at our website http://regex.wustl.edu. 

II. THE REGULAR EXPRESSION MODEL 

In this section, we first categorize the features used in regular 

expressions found in publicly-available network intrusion 

detection systems and anti-virus rule-sets. Using these features, 

a synthetic regular expression set is developed that can be used 

to generate synthetic patterns reflecting characteristics of real 

world data. 

A. Regular expression taxonomy 

We begin by characterizing features found in regular 

expressions derived from commonly used anti-viruses and 

network intrusion detection systems. 

Exact-match strings. Exact-match strings represent the 

simplest patterns which may appear in a rule-set. An exact-

match string is a fixed size pattern which must occur in the 

input text exactly as is. Rule-sets consisting only of exact-

match strings exhibit two important properties. First, DFA 

based solutions [3] can be effectively used since their size is 

dependent only upon the number of characters in the pattern set 

(and do not exceed that of the corresponding NFA). Second, 

optimizations based on hashing schemes can be exploited 

[16][17]. 

Character sets and simple wildcards. Character sets are 

found in regular expressions in two forms: either as [c1-cjckcl] 

expressions, or as special cumulative symbols, namely \s, \d, 

\w, \S, \D, \W. In the first case the set includes all characters 

between c1 and cj, ck and c1. In the second case the set consists 

of all space characters (\s), all digits (\d), all alphanumerical 

characters (\w), and their complements (\S, \D, \W). A wildcard 

(e.g., any character of the alphabet) is represented through a 

non-escaped dot. 

Clearly, these sub-patterns allow more expressive regular 

expressions, each of them representing a set of exact-match 

strings. In general, character sets and wildcards don’t allow the 

direct application of the Aho-Corasick DFA construction 

algorithm [3] and of hashing schemes [16][17]. However, at 

the cost of increasing the size of the pattern-set, it is possible to 

perform an exhaustive enumeration of the corresponding exact-

match strings and produce the simpler case that doesn’t violate 

the two “Exact-Match” properties cited above. 

Simple character repetitions. Simple character repetitions 

appear in the form c+ and c*, c being any character of the 

alphabet. Simple character repetitions still allow the size of the 

DFA not to exceed the number of characters in the pattern-set. 

However, in this case, using exhaustive enumeration to reduce 

a regular expression to a set of exact match strings is not 

possible since an infinite number of such strings exist. 

Therefore, hashing schemes such as [16] and [17] are not 

applicable. 

Character sets and wildcard repetitions. Repetitions of 

character sets and wildcards (also called dot-star terms) 

introduce additional complexity. When several such regular 

expressions are compiled together into a single DFA, the DFA 

size may explode [20]. Thus, not only are hashing schemes not 

applicable to this case, but a single DFA may not be a feasible 

solution. A common technique is to cluster rules into multiple, 

concurrent DFAs [14][25]. This reduces the memory footprint 

in exchange for increased memory bandwidth; specifically, N 

DFAs require an N-fold increase in memory bandwidth. As an 

alternative, NFAs can be used, again trading off memory space 

with memory bandwidth requirements. 

Counting constraints. Counting constraints appear as 

bounded repetitions of simple characters, sub-patterns, 
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TABLE 2: CHARACTERISTICS OF PRACTICAL DATA-SETS FROM SNORT, BRO AND CLAMAV. 

Data-set 

# Reg 

-Ex \x \x+ . .* [c1..cn] [c1..cn]* [^\n\r]* (sp)+ c+ c{n} 

[c1..cn] 

{n} .{n} 

(sp) 

{n} 

OR- 

exp 

Snort1 22 4\s 13\s+ 4 2 3 10 8 4 0 0 0 1 5 46 

Snort2 78 1\d 

173\s+ 

28\d+ 1 18 1 1 81 0 0 2 1 0 0 0 

Snort3 102 

9\s  

2\d 

165\s+ 

99\d+ 

1\w+ 2 5 5 3 26 1 2 1 1 0 2 18 

Snort4 468 4\s 

77\s+ 

26\d+ 

1\S+ 14 38 5 9 468 7 3 0 11 3 7 87 

Bro0.8 226 0 0 0 10 1399 0 0 0 0 0 0 0 8 0 

Bro0.9 40 0 0 20 0 22 1 0 6 0 0 0 0 10 8 

ClamAV 30411 0 0 0 1221 0 0 0 0 0 0 0 113 0 5 

 

character sets and wildcards. Their upper bound may or may 

not be constrained. In the case of simple characters and sub-

patterns having repetitions with a constrained upper bound, an 

exhaustive enumeration of the corresponding exact-match 

strings is possible with the implications seen above. 

Particularly problematic, however, are counting constraints on 

large character sets and wildcards. As highlighted in [14] [20], 

they can lead to exponential state blow-up when performing 

NFA-DFA transformation even on single regular expressions 

compiled in isolation. With counting constraints, DFA-based 

methods are infeasible. It is preferable to replace counting 

constraints with unbounded repetitions and handle the  value of 

the counter separately [20]. 

B. Analysis of practical rule-sets 

This section presents an analysis of real-world rule-sets. Our 

objectives are three-fold. First, we verify that the feature set 

above is comprehensive. Second, we evaluate the complexity 

of practical rule-sets. Third, we derive a methodology for 

building synthetic rule-sets. Synthetic rules are useful for 

exploring the performance of competing approaches; they can 

be constructed to both reflect real-world characteristics by 

anonymizing existing rules and to explore characteristics not 

yet found in existing rule-sets. 

The regular expressions we study are extracted from Snort 

[4][5] and Bro [6], two open-source network intrusion 

detection systems, and from ClamAV [7], an anti-virus system 

intended for email scanning on mail getaways. For ClamAV, 

all the regular expressions from main.db database (August 

2007) are considered. For Bro, the ex_web regular expressions 

(version 0.8) and the sig-addendum patterns (version 0.9) are 

considered. For Snort, all the rules available (versions 2.7, 

November 2007) are included. 

It should first be noted that 5,549 out of 8,536 Snort active 

rules contain at least one Perl Compatible Regular Expression 

(PCRE). However, half of those regular expressions contain 

just counting constraints on wildcards that are better handled 

using counters rather than through finite automata. Therefore, 

those expressions were excluded from our analysis. 

Furthermore, we note that within Snort, packet payload 

inspection (requiring regular expression matching) is 

performed only after packet header filtering. A useful 

partitioning of the remaining set of Snort rules can therefore be 

based on clusters of rules sharing the same header information. 

As a result, Snort regular expressions are associated with one 

of the following four header sets: 1) (tcp, $external_net, any, 

$home_net, $http_ports), 2) (tcp, $home_net, any, 

$external_net, 25), 3) (tcp, $home_net, any, $external_net, 

any), and 4) (tcp, $home_net, any, $external_net, $http_ports). 

The set of regular expressions can now be decomposed into 

a number of exact-match sub-patterns separated by character 

sets (single and repeated), wildcards (single and repeated), 

counting constraints, and disjunctions of simple sub-patterns. 

With this limited feature set, every regular expression can be 

examined and aggregate feature statistics can be collected 

including: minimum, maximum and average pattern length, 

minimum, maximum and average exact-match sub-pattern 

length, number of character sets and of their repetitions, 

number of wildcards and dot-star terms, number of sub-pattern 

repetitions, number of counting constraints (classified by type), 

and number of disjunctions. The results are shown in Table 1 

and Table 2. 

As can be observed, Snort rule-sets are the most complex in 

that they contain all the above sub-pattern types. Moreover, 

note the high occurrence of wildcard and character range 

TABLE 1: STATISTICS ON THE LENGTH OF REGULAR EXPRESSIONS AND 

THEIR EXACT-MATCH SUB-PATTERNS FOR SEVERAL RULE-SETS. 

Data-set 

# Reg 

-Ex 

Length Sub-pattern length 

min max avg min max avg 

Snort1 22 4 102 25.3 1 22 5 

Snort2 78 11 101 33.6 1 28 6.2 

Snort3 102 1 52 21.2 1 22 5 

Snort4 468 4 393 27.9 1 46 10.1 

Bro0.8 226 1 84 12.3 1 46 4.1 

Bro0.9 40 4 45 19.4 1 43 11.3 

ClamAV 30411 6 210 67.2 1 210 64.3 
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repetitions, which, as mentioned, cause state blow-up in the 

corresponding DFAs. In particular, a dot-star expression 

indicates that the separated sub-patterns must both appear in 

the input text in the indicated order, whereas the frequently 

occurring [^\n\r]* term adds the additional constraint of 

belonging to the same line. Bro rules appear to be simpler, 

even though they contain some dot-star terms and character 

ranges. Finally, ClamAV regular expressions consist of relative 

long exact-match sub-patterns occasionally separated by dot-

star conditions and counting constraints on wildcards. 

Nearly all the regular expressions presented in the analyzed 

rule-sets are covered by the above description. A small 

exception consists of 70 Snort PCREs containing back 

references, a specific Perl feature that is not part of the regular 

expression definition. Given the above characterization of 

regular expressions, we now derive a set of synthetic regular 

expressions that may be used in performance analysis studies.  

C. Generation of synthetic rule-sets 

The above characterization was used in order to create a model 

for generation of synthetic rule-sets. The parameters of the 

model are the following:   

•  RE#: Number of regular expressions to be generated. 

• min_length, max_length, avg_length:  Minimum, maximum 

and average regular expression length. 

• f\s, f\d, f\w, f\S, f\D, f\W: Frequency of special character sets. 

• f\s+, f\d+, f\w+, f\S+, f\D+, f\W+: Frequency of special character 

set repetitions. 

• f[c1..ck], f[c1..ck]+, f[^\n\r]*: Frequency of character set and 

character set repetitions ([^\n\r]
* terms are treated 

separately). 

• f. , f.* : Frequency of wildcard and dot-star terms.  

• fc+, f(sp)+: Frequency of simple character and sub-pattern 

repetitions. 

• fc{n}, f(sp){n}, f[c1..ck]{n}, f. {n}: Frequency of counting constraints 

on simple characters, sub-patterns, character ranges and 

wildcards. 

• fOR: Frequency of disjunction sub-patterns. 

• min_sp_length, max_sp_length, avg_sp_length: Minimum, 

maximum and average exact-match sub-pattern length. 

• SEM: Set of available exact-match sub-patterns. 

The last two items are mutually exclusive. Regarding exact-

match sub-patterns, two different approaches are possible. In 

the first, sub-patterns are automatically generated by 

concatenating randomly selected characters with the length of 

each sub-pattern being a random variable. This random 

variable is either uniformly distributed between min_sp_length 

and max_sp_length, or normally distributed with mean 

avg_sp_length and variance dependent upon min_sp_length 

and max_sp_length. A similar statistical approach can also be 

applied to the character selection process thus allowing biasing 

of the alphabet set used. The drawback of this method is that it 

provides no direct control on whether the generated strings 

have real meaning. A second approach, the one chosen for our 

synthetic rule-sets, utilizes sub-patterns derived from real 

world data-sets (e.g., segments of network protocols or URLs) 

and collected into SEM. 

Given the selected parameters, the regular expression 

generator operates as follows. From RE# and the above 

frequencies, the generator computes the set of available non-

exact match terms SNEM and the average number of non-exact 

match terms per regular expression NNEM. The length of each 

regular expression is randomly selected according to the length 

parameters listed above. Each regular expression is built by 

alternating an exact- and a non-exact-match sub-pattern. Those 

patterns are randomly selected from SEM and SNEM according to 

a uniform distribution. After selection, these two sets are 

updated. The concatenation process stops upon reaching the 

pre-computed regular expression length; several exact-match 

patterns may be appended after insertion of NNEM non-exact 

match terms in the same regular expression. 

III. USING FINITE AUTOMATA TO PERFORM 

REGULAR EXPRESSION MATCHING 

High-speed regular expression matching systems are based on 

either NFAs or DFAs. The theory for both constructing an 

NFA for a given regular expression set and converting an NFA 

into its DFA counterpart is well known [1]. However, in some 

cases, NFA-DFA conversion can lead to state explosion, 

leaving DFA-based solutions impractical [20]. In this paper we 

focus on NFAs, since they allow us to explore pattern-sets with 

arbitrary complexity without incurring unreasonable resource 

requirements. However, for the sake of completeness, we 

briefly discuss DFAs and compare the results obtained through 

the use of the two automata. 

A. Introduction to NFAs 

In Figure 1(a) we represent an NFA accepting regular 

expressions abcd, ab[a-z]e
+,  bc

+
d.

*
a and bc

+
e, constructed in 
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Figure 1: NFA accepting RegEx: (1) abcd, (2) ab[a-z]e+, (3) bc+d.*a, 

(4) bc+e.  Accepting states are represented in gray (the number after 

the slash indicates the accepted regular expression). The original NFA 

is represented on the left, whereas its compressed form obtained by 

collapsing common prefixes is shown on the right. State 0 has an 

auto-loop since the match is not anchored to the beginning of the 

input string, but may occur at any position. 
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the standard way [1]. To evaluate a representation, whether an 

NFA, DFA, or other data structure, we must consider two 

metrics: the amount of memory needed to store it and the 

amount of memory bandwidth needed to operate it. 

NFA size depends only on the number of characters in the 

pattern-set. This is true even if some regular expressions 

contain simple and repeated character ranges. 

To find the operating memory bandwidth, we must 

understand how the NFA works. The pattern matching 

operation starts from the entry state 0, as shown in Figure 1. A 

match is reported every time an accepting state (in gray) is 

traversed. The characters in the input text are processed in 

sequence, and all the outgoing transitions from the active state 

labeled with the current input character are taken. Notice that, 

since each state can have more than one transition on any given 

character, many states can be active in parallel. We will call 

these states the active set. Since every state traversal implies 

one or more memory operations, the size of the active set gives 

a measure of the memory bandwidth requirement and, in case 

of sequential memory accesses, of the processing time.  

As an example, let us process the input text abcda. The NFA 

traversal will involve the following active set sequence 

(accepting states are underlined). 

( ) ( ) ( ) ( )

( ) ( )12,11,5,1,04,11,0

7,3,14,10,06,2,13,9,05,1,00

→→

→→→

ad

cba
 

In this case, the maximum active set size is 5, and the total 

number of state traversals is 22. The worst case traversal often 

reported in literature corresponds to an active set including all 

the states in the NFA. Notice that this worst case is in practice 

never achieved. As an example, state 1 can never be active 

together with any of 2, 3, 4, 6, 8, 9, 10, 13, 14 and 15 as it is 

entered upon a different input character. 

In general the NFA for a given regular expression set is not 

unique. However, given any NFA, it is possible to compute an 

optimized representation of it by collapsing common paths 

starting at the entry state. This can be done by applying a 

variant of the NFA-DFA conversion algorithm detailed in [1]. 

Specifically, for every state, the optimization algorithm: (i) 

expands only the characters upon which there is at least one 

outgoing transition, (ii) avoids expanding self-transitions. 

The compressed NFA obtained by applying the above 

optimization to the NFA represented in Figure 1(a) is shown in 

Figure 1(b). Note that the compressed variant is preferable for 

two reasons. First, it has a smaller size, both in terms of the 

number of states and transitions. Second, the active set size has 

lower bounds thus resulting in a lower traversal time. In fact, 

the input text abcda can be now processed through the 

following active set sequence. 

( ) ( ) ( ) ( )

( ) ( )11,10,1,04,10,0

3,9,02,8,01,00

→→

→→→

ad

cba

 

Notice that the maximum active set size has decreased to 4, 

and the total number of state traversals to 16. For the 

remainder of this paper we consider only compressed NFAs. 

B. Introduction to DFAs 

In a DFA, each state has one and only one outgoing transition 

for each symbol of the alphabet. As a consequence, during 

traversal the active set will always consist of a single state. The 

interested reader can refer to [1] and [2] for the details about 

DFA construction and operation. 

As mentioned above and as discussed in [14] and [20], 

pattern-sets containing complex regular expressions can make 

a single DFA infeasible. State explosion may in fact take place 

when converting the corresponding NFA into its deterministic 

counterpart. This can be mitigated by clustering the rules into 

groups and compiling them into distinct DFAs [14] [25]. As 

will be shown in Section VI, this will increase the memory 

bandwidth requirement, in that all the DFAs must be accessed 

while processing every input character. 

As will be discussed in Section VII, several techniques have 

been proposed to reduce the memory space requirements of a 

DFA. In this paper, we use the default transition based scheme 

proposed in [19], which, to our knowledge, represents the most 

effective DFA compression algorithm available. The scheme 

reduces the number of transitions necessary to represent a DFA 

at the cost of increasing the number of state traversals per 

character (in the worst case, by a factor 2). 

C. NFAs and DFAs from synthetic regular expression sets 

The regular expression model discussed in Section II was 

proposed to generate synthetic regular expression sets. We now 

study how the characteristics of the pattern-set reflect on the 

corresponding finite automata. In all cases, the length of the 

regular expressions was uniformly distributed. Two length 

ranges were considered, the first between 20 and 60 (selected 

with probability ¾) and the second between 20 and 100 

(selected with probability ¼). 

The generated data-sets consist of 300 regular expressions 

with increasing complexity (Figure 2). In the figure, 

complexity increases left to right with the lowest complexity 

regular expressions in this set containing only exact-match 

terms, and the highest complexity regular expression 

containing a high number of dot-star terms. In particular, the 

second and the third expression sets contain character ranges 

(randomly selected between the different \x and \x+ groups), 

with average frequency of 0.5 and 1 per regular expression. 

The last three expression sets contain, in addition to one 

character range per regular expression, wildcard repetitions 

(either in the .* or in the [^\r\n]* form) with average frequency 

ranging from 0.3 to 0.9 per regular expression.  

For the sake of completeness, we also generated the 

corresponding DFAs. In the case of complex patterns, we 

needed to perform regular expression clustering and generate 

multiple DFAs (1, 2, 2, 14, 24, and 32 DFAs, going from the 

leftmost to the rightmost pattern-set, respectively). In 

particular, clustering was done by recursively bisecting the 

pattern-set so to keep the size of each DFA below 100,000 

states. 
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Three basic observations can be made. First, as expected, 

the number of NFA states is similar across the different data-

sets (in that it depends only on the number and length of the 

regular expressions). Second, the number of NFA transitions 

increases with the pattern complexity. Third, the total number 

of DFA states, especially in case of complex patterns, exceeds 

by far that of NFA states and transitions. Applying the default 

transition construction algorithm proposed in [19] to these sets 

leads to 2-to-4 outgoing transitions per DFA state. 

This illustrates how the workload model developed here can 

be tuned to effectively reflect different types of regular 

expression sets, and thus how one can explore new regular 

expression sets that may be developed in the future in response 

to new virus designs. 

IV. THE TRAFFIC MODEL 

To analyze performance, it is necessary to specify a traffic 

model to direct the FA (either NFA or DFA) traversal. One 

approach is to examine real Internet traffic and abstract from 

this examination a “typical” subset of malicious traffic and 

non-malicious traffic. This subset could then be used in 

conjunction with the synthetic FA and an associated 

architecture model to examine the effect of different 

architecture parameters on performance. Another approach to 

generating traffic is to embed in the synthetic FA a set of 

probabilities associated with state transitions. Traffic 

generation in this case involves traversing the FA by using a 

random number generator and associated probability 

distributions to determine movement from state to state. We 

adopt the latter approach. In particular, we have created a 

synthetic traffic generator that produces a plausible traffic 

stream given an FA and a probability pM of experiencing 

malicious traffic. 

To understand the operation of the traffic generator, we must 

first characterize good and bad traffic. Since regular expression 

data-sets have the goal of detecting suspicious activities, at a 

first glance an input stream may be considered malicious if it 

matches some patterns in the rule-set. In reality, however, a 

more dangerous attacker will harm the system by slowing down 

or breaking its operation without being noticed. 

NFA and DFA traversals tend to exhibit a high degree of 

locality especially when guided by average traffic. In fact, 

average traffic tends not to match any patterns and therefore 

tends to limit the traversal to a restricted number of low-depth 

states. This locality can be exploited in order to engineer high 

performance packet inspection architectures, either by using 

caches or, in the case of ASIC designs, by accommodating the 

portions of the automata representing the fast path (i.e., the 

most commonly traversed states) on fast on-chip memory. 

Therefore, malicious traffic will force the system to operate on 

its slow path by preventing traversal locality. 

Ideally, bad traffic will cause random walks in the FA. Since 

this goal is difficult to achieve, especially given the fact that 

the FA structures are not known to the attacker, a malicious 

strategy would be to send pieces of harmful traffic. As an 

example, virus signatures can be easily found on the web and 

in open source network intrusion and detection system (NIDS) 

rule-sets. Also, the input stream should not be repetitive (since 

this would foster traversal locality), and should avoid complete 

matches (which would alarm the NIDS). 

The goal of the traffic generator should now be clear. The 

generated character stream should contain only partial matches, 

and cause the traversal of as many FA states as possible. One 

way to accomplish this is based on a simple observation made 

above. For any given state, forward outgoing transitions (that 

is, transitions directed toward deeper states) determine 

progress in the match. Therefore, malicious traffic will tend to 

follow forward transitions unless they lead to an accepting 

state. This will also limit low-depth state traversals, which 

dominate average traffic. 

Since the FA traversal always starts at the entry state s0 and 

since the FA is given to the traffic generator, the problem of 

incrementally generating the input stream can be formulated as 

follows: given the current set of active states, what is the next 

character to be processed? At each step, either a forward 

transition is taken with probability pM or a random character is 

selected with probability 1- pM. If the decision is to follow a 

forward transition, the selection of the specific transition (and, 

as a consequence, of the corresponding character) happens as 

follows. All the outgoing transitions from the active set are 

considered, and the one leading to the deepest state is chosen. 

If no forward transition is available, any character can be 

randomly selected. 

This basic operation can be refined in several ways to 

simulate the behavior of more sophisticated attackers. 

For example, observe that the model is memory-less and the 

selection of the next transition is dependent only on the current 

set of active states (i.e., a one step Markov chain) and is thus 

oblivious to the characters already sent. Despite the use of 
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randomness, this may reproduce previously generated sub-

patterns. The traffic generator can be augmented with a history 

buffer of configurable size that records the past state traversals, 

making the exploration more selective. 

The traffic generator is instrumented to produce streams of 

random length between a user-specified minimum and 

maximum value. In the simulations presented in Section VI, 

those limits are set to 5KB and 1MB, to simulate traffic 

ranging from small flows to file transfer operations. 

V. MEMORY LAYOUT OPTIONS 

An orthogonal design problem consists of selecting the 

concrete data structure used to perform pattern matching; such 

a data structure must account for every bit needed to represent 

the NFA/DFA. 

Given an alphabet Σ of cardinality |Σ| (256 in case of the 

ASCII alphabet), a naive solution consists of representing a 

state s as a list of |Σ| next state pointers. However, this 

approach does not leverage the fact that most states have only a 

restricted number of outgoing transitions. 

Alternatively, we consider three different techniques to 

encode the compressed FA: i) linear encoding, ii) bitmapped 

encoding and iii) address indirection. These encoding schemes 

access memory differently and thus differ in the number of 

memory accesses required for each state traversal.  While each 

of these techniques can be tuned, for the sake of simplicity and 

comparison we assume the use of a 32-bit word aligned 

memory layout and avoid FA specific optimizations. 

Note that an NFA state may have several outgoing 

transitions on the same character, which may complicate the 

memory layout. To avoid this, states with this characteristic are 

split into multiple states connected through non-consuming 

epsilon transitions. Every time a state s is activated, so are all 

the states connected to s via an epsilon transition. This 

approach, despite increasing the active set size, allows a 

uniform NFA state representation. 

A. Linear encoding  

If linear encoding is used, a state with l transitions is encoded 

through l+1 32-bit words with the first one representing the 

epsilon/default, and the others the remaining transitions. Each 

word has one bit indicating whether the transition is the last 

one within the state, 8-bits representing the input character 

upon which the transition must be taken, and the remaining bits 

devoted to the next state address. A state traversal starts from 

the first word, and involves going through the transitions in 

sequence until the one matching the input character is found or 

its absence is verified. When using linear addressing, a 

threshold t is used. States having more that t outgoing 

transitions are fully represented through |Σ|+1 pointers (and 

accommodated in a separate memory region) to allow fast 

access. 

B. Bitmapped encoding 

Bitmaps [12] admit a reasonable upper bound on the number of 

memory accesses needed to process a character. Specifically, 

in this context a bitmap is an array of |Σ| bits, each one 

indicating whether the corresponding transition exists or not. 

Each state is encoded through a bitmap and a sequence of l+1 

memory words, each one representing a next state pointer. 

Upon state traversal, the bitmap is first analyzed. If it contains 

a 0 in the position of the input character, then only a direct 

access to the epsilon/default transition is performed. 

Otherwise, a pop-count of the number of 1s preceding the 

current position is made, and this information is used to 

directly access the proper next state transition. 

Several techniques to compress bitmaps have been proposed 

[27]. In this paper, we use a two level organization where a 

first-level 32-bit bitmap is used to address a set of second-level 

8-bit bitmaps. For sparse FAs, this scheme shows an acceptable 

overhead.  Furthermore, as in the linear encoding case, states 

with a high number of outgoing transitions are fully encoded. 
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Figure 5: Effect of the traffic and the pattern-set on the maximum NFA 

depth reached during traversal.  

C. Indirect addressing 

Indirect addressing, a generalization of the content addressing 

scheme proposed in [18] for DFAs, can be used to further 

reduce the number of memory accesses per state traversal. 

With this approach each state is given an identifier consisting 

of: i) the list of characters upon which there exists an outgoing 

transition, and ii) a set of bits, called a state discriminator. 

When a state is traversed, examining the state identifier can 

determine whether a transition must be followed. Moreover, 

the order of the characters in the state identifier is used in 

performing a direct memory access. 

The discriminator is introduced to ensure that all state 

identifiers are different, even for states having labeled 

transitions on the same set of characters. An indirection 

operation, performed through hashing, is thus needed in order 

to translate a state identifier into a memory address. Reference 

[18] explains how to map state identifiers to memory addresses 

in a manner that ensures good memory utilization. 

In this paper, 8-bit discriminators are assumed. Two possible 

configurations are allowed: i) 32-bit and ii) 64-bit state 

identifiers. In the former case, states with more than 3 outgoing 

transitions must be fully represented. In the latter case, this 

limit is moved to 7 (as 4 more characters can be represented in 

the additional 32 bits). 

 Figures 3 and 4 show the memory size obtained by applying 

the described memory representations to the pattern-sets from 

Figure 2. In the case of linear and bitmapped layouts, the 

threshold t was set to 50 outgoing transitions. As could be 

expected, the linear encoding, requiring pointers only for 

existing transitions, is the most compact representation. 

Bitmapping adds the overhead for storing the bitmaps. Indirect 

addressing suffers since many states exceed 3/7 outgoing 

transitions and must therefore be fully represented. In 

particular, this holds when wildcards and character ranges are 

numerous, whereas the memory size is small in the case of 

simple exact-match patterns. Finally, the memory footprints of 

a DFA-based solution exceed by far those of an NFA 

representation, especially as the complexity of the regular 

expressions increases.  

VI. EVALUATION AND DISCUSSION 

In this section, we evaluate the regular expression matching 

operation with different cache settings. In particular, we 

perform our evaluation on the synthetically generated rule-sets 

from Figure 2. To evaluate the traversal operation, we use the 

traffic model presented in Section IV. 

A. Methodology 

The parameter space of our analysis is shown in Table 4. In 

particular, grey cells highlight parameters for which a range of 

settings have been tested. To perform this analysis, we created 

a simulator that allows the evaluation of different cache 

configurations and memory layouts. Specifically, given an 

NFA/DFA and an encoding scheme, our tool generates the 

corresponding memory layout (used in the previous section to 

compute the memory footprint). Additionally, given an input 

string and a memory layout, the simulator generates the 

sequence of memory reads triggered during the traversal. 

Those memory references are used as inputs to a cache 

simulator in order to derive latency information.   
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TABLE 3: PARAMETER SPACE USED IN THE EVALUATION. 

 Parameter Values 

Traffic pM 0.35, 0.55, 0.75, 0.95 

Cache size 4 KB, 16KB, 64KB, 256KB 

line 64B 

associativity DM 

hit latency 1 clock cycle 

miss latency 30 clock cycles 

Memory 

layout 

encoding linear, bitmapped,  

ind. addr 32-bit, ind. addr. 64-bit 
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The cache size has been varied to cover values used on 

general purpose processors as well as on embedded 

multiprocessor architectures such as Tensilica Xtensa [28]. 

Traffic traces were generated using 10 different seeds and the 

results were averaged. 

In general, the evaluation metrics can be grouped into the 

following categories: 

- Traffic and finite automaton dependent: number of state 

traversals/input character; 

- Memory encoding dependent: memory size, number of 

memory accesses per input character; 

- Cache configuration dependent: cache hit rate, number of 

clock cycles per input character. 

We now consider some important results of our analysis. 

B. Effect of complexity and malicious traffic 

First of all, we want to analyze the impact of the traffic pattern 

on the NFA/DFA traversal across the different pattern-sets. In 

particular, Figures 5 and 6 highlight how the maximum depth 

reached during the traversal and the average number of state 

traversals per character change when pM increases. Recall that 

high values of pM are used to model the likelihood of malicious 

traffic.  

As could be foreseen, higher values of pM force the traversal 

into deeper areas of the NFA (the same has been observed in 

the DFA case). More importantly, this parameter has a high 

impact on the percentage of states involved in the pattern 

matching operation: high values of pM imply less traversal 

locality. In fact, our data show that the percentage of states 

traversed increases with pM across all the pattern-sets, ranging 

from about 3.9% to 30% when pM varies between 0.35 and 

0.95. Moreover, NFAs outperform DFAs when the pattern 

complexity increases. Finally, the number of DFA state 

traversals is affected principally by the number of DFAs (pM 

has an additional minor effect on the overhead due to following 

default transitions).  

C. Effect of memory encoding 

As explained above, different memory encodings imply a 

different number of memory accesses per state traversal. In 

Figures 7 and 8 we study this effect across pattern-sets. In 

particular, we show the results for the minimum and maximum 
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Figure 7: Effect of memory encoding on number of memory accesses 

per input character, pM=0.35. 
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values of pM considered so far, namely 0.35 and 0.95.  

As a general observation, the curves follow the same trends 

as found in Figure 6. In the case of linear addressing, the need 

for sequentially accessing the state transitions introduces an 

overhead. In the case of bitmapping, the overhead is due to the 

need for querying the bitmap. 

As can be observed, the indirect address encoding with 32-

bit identifiers has the best behavior. In fact, it requires only one 

memory access per state (note that in the case of epsilon 

transitions two accesses may be needed). Indirect addressing 

with 64-bit state identifiers doubles the number of needed 

memory accesses. In the case of bitmapping, the overhead 

introduced when accessing the bitmap does not justify its use 

compared to a simple and more compact linear encoding 

approach. Finally, for complex patterns even the best DFA 

representation (32-bit indirect addressing) leads to far worse 

results than the NFA counterpart, especially in the case of 

average traffic (low pM). 

D. Cache dependent results 

Finally, we evaluate the performance of the design with 

different cache settings. In Figures 9 and 10 we report the 

average number of clock cycles per input character in the case 

of malicious traffic (pM equal to 0.95). We consider two 

encodings: indirect addressing with 32-bit identifiers and linear 

encoding. In fact, the former minimizes the number of memory 

accesses per character and the latter has the smallest memory 

footprint.  

Again, the trend of the curves can be compared with that in 

Figure 8. We can observe that, in case of NFAs, a 64KB cache 

is enough to ensure about one clock cycle per memory access. 

In fact, a 64KB cache guarantees a hit rate in excess of 98% 

for both encodings. However, for small cache sizes (e.g. 4KB) 

the performance of linear encoding approaches that of indirect 

addressing. In fact, the small memory footprints of the linear 

layout allow a higher hit rate which compensates for the worse 

behavior in terms of the number of memory accesses per 

character.  The largest memory footprints of a DFA solution 

make a 256KB cache necessary to achieve acceptable 

performance (comparable to a NFA with 16KB-64KB cache).   

VII. RELATED WORK 

Regular expression matching at line rate has been recognized 

as an important problem and has been considered in related 

work. Prior work in this area takes two generally distinct 

directions: FPGA based implementations [22]-[25] and 

approaches suitable for deployment on a general purpose 

processor or on ASIC hardware [12]-[16][19][25]. Our work 

has the goal of proposing an evaluation methodology for the 

second class of solutions. We address the reader interested in 

benchmarking and evaluation of FPGA based designs to the 

work by Clark and Schimmel presented in [26].   

A substantial body of research work focused on compression 

techniques aiming at reducing the amount of memory needed to 

represent DFAs. In particular, Kumar et al. [15] proposed an 

algorithm to compress a DFA through the introduction of 

default transitions. Their work is based on the idea of trading 

of memory storage requirement with processing time. A more 

general and less complex algorithm to achieve the same goal 

has been recently proposed by Becchi et al. [19]. By allowing 

only backward directed default transitions, a better memory 

bandwidth requirement is achieved with the same compression 

degree of [15].  

A different category of compression techniques based on the 

concept of hashing and on probabilistic data structures such as 

Bloom Filters are proposed in [16] and [17]. However, it must 

be stressed that those techniques are applicable only to exact-

match strings, or to regular expression classes which allow an 

exhaustive enumeration of the underlying patterns. As seen, 

none of the practical data-sets analyzed in Section II exhibits 

those characteristics.  

Finally, a fair comparison of NFA based designs is missing. 

This work provides evaluations of such designs.  

VIII. CONCLUSION  

This paper  introduces a benchmark and workload for the 

evaluation of regular expression architectures. We provide an 

objective workload and methodology for the fair evaluation of 

deep packet inspection (DPI) architectures. Our approach 

incorporates real-world regular expression rule-sets drawn 

from popular network security systems, along with a procedure 

for generating synthetic rule-sets, which can be used to explore 

how a given representation for regular expressions may be 

sensitive to changing rule characteristics. Our goal is to 

accelerate the design of superior regular expression data 

structures, algorithms, and architectures by providing an open-

source evaluation framework. 

The primary contribution of this paper lies in the analysis of 

real-world rules and in the construction of the benchmark and 

evaluation framework. Additionally, our analysis illustrates 

that NFA-based solutions are far more practical than previous 

work has suggested. 

In this paper, we used the workload to perform a thorough 

evaluation of DFA- and NFA-based solutions on a processor –

based architecture making use of caches. The analysis shows 

how different factors contribute to the performance of the 

regular expression matching architecture. Specifically, the 

behavior of the system depends on: the complexity of the 

underlying pattern-set, the amount of malicious activity in the 

traffic, the memory encoding scheme and cache size. 

Finally, all of the data and software needed to recreate the 

results presented in this paper are available as an open-source 

software distribution at http://regex.wustl.edu. 
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