
Workload Characterization of selected JEE-based Web 2.0 Applications

Priya Nagpurkar William Horn U. Gopalakrishnan Niteesh Dubey Joefon Jann Pratap Pattnaik

IBM T.J. Watson Research Center

Abstract

Web 2.0 represents the evolution of the web from a

source of information to a platform. Network advances

have permitted users to migrate from desktop applications

to so-called Rich Internet Applications (RIAs) character-

ized by thin clients, which are browser-based and store

their state on managed servers. Other Web 2.0 technolo-

gies have enabled users to more easily participate, col-

laborate, and share in web-based communities. With the

emergence of wikis, blogs, and social networking, users

are no longer only consumers, they become contributors

to the collective knowledge accessible on the web. In an-

other Web 2.0 development, content aggregation is moving

from portal-based technologies to more sophisticated so-

called mashups where aggregation capabilities are greatly

expanded.

While Web 2.0 has generated a great deal of interest

and discussion, there has not been much work on analyz-

ing these emerging workloads. This paper presents a de-

tailed characterization of several applications that exploit

Web 2.0 technologies, running on an IBM Power5 system,

with the goal of establishing, whether the server-side work-

loads generated by Web 2.0 applications are significantly

different from traditional web workloads, and whether they

present new challenges to underlying systems. In this pa-

per, we present a detailed characterization of three Web 2.0

workloads, and a synthetic benchmark representing com-

mercial workloads that do not exploit Web 2.0, for compar-

ison.

1. Introduction

Web 2.0 represents the evolution of the web from a

source of information to a platform [15]. This emerging

platform has facilitated various participatory activities over

the internet like social networking, collaboration, and con-

tent sharing. Enterprises are beginning to use Web 2.0

technologies to increase employee productivity by enabling

similar collaborative activities in the corporate world. Web

2.0 applications use relatively new technologies to drive tra-

ditional Internet technologies in ways that are quite different

from existing web and enterprise applications, presenting

new challenges to underlying systems.

In spite of the excitement and interest that Web 2.0 has

generated, to the best our knowledge, there has been no sys-

tematic characterization of these workloads and their impact

on the underlying systems that host them. Such a character-

ization is an important first step towards driving innovation

at the architecture, operating system, JVM, and middleware

levels, to better support these emerging workloads. The lack

of Web 2.0 benchmarks, or applications that are easy to de-

ploy and run, is one of the major hindrances inhibiting more

research in this area. In this paper, we first describe the

methodology we used to set up existing Web 2.0 applica-

tions as benchmarks, and then present a detailed characteri-

zation of workloads generated using these benchmarks.

To create our benchmarks, we took two JEE-based1 ap-

plications that exploit Web 2.0 features, and designed a test

harness that exercises them in a manner representative of

real-world use scenarios. We deployed these benchmark

applications on an IBM Power5 system with the primary

goal of analyzing the server-side behavior of these work-

loads, and finding optimization opportunities in the system

and software stack that hosts them. We present a number

of statistics for these benchmarks, from the user level be-

havior as captured by HTTP requests to micro-architectural

behavior captured by hardware performance counters, and

also contrast them with a traditional enterprise Java bench-

mark. Our analysis captures two expected features of Web

2.0 applications, namely their chattiness and the presence of

user-generated content from the HTTP characteristics, and

indicates that the data-centric behavior of Web 2.0 appli-

cations leads to a significant amount of time spent on data

cache miss stalls.

In summary, we make the following contributions:

• Explanation of Web 2.0, especially from a Java server

environment perspective

• A detailed description of how existing Web 2.0 ap-

plications can be turned into repeatable and realistic

1The Java Enterprise Edition platform (JEE) was formerly called J2EE,

we use JEE in this paper to represent both

109978-1-4244-2778-9/08/$25.00 ©2008 IEEE

benchmarks

• A detailed characterization of three Web 2.0 workloads

The rest of the paper is organized as follows. We start

with some background on Web 2.0 applications and tech-

nologies in Section 2. In Section 3 we describe the Web 2.0

applications we analyzed along with the test framework that

we developed. We then present our analyzes of these work-

loads in Section 4, followed by related work in Section 5.

We conclude in Section 6 with a summary of our findings

and a discussion of future work.

2. Background

Since its inception, the Internet has permitted the ex-

ploitation of a variety of new applications. One of the appli-

cations, the World Wide Web, has permitted users to navi-

gate an extensive network of interlinked resources and ac-

cess large amounts of information in a variety of forms in-

cluding text, images, and video. From the start, the thin

client browser was a cornerstone of the World Wide Web.

Over time, the power and sophistication of client browsers,

backed by advances in underlying standards, has increased

to the point where JavaScript-based client technologies per-

mit a significant degree of interactivity. Also, advances in

network technologies have permitted reliable connections

to the World Wide Web at broadband speeds to become the

norm.

Backed by these advances in the browser technologies

and network performance and with the increasing sophisti-

cation of its users, the Web has also become increasingly

more participatory. More and more users are contributing,

sharing and collaborating on more and more content. Types

of contributed content include: opinions that are uploaded

and shared in blogs; collaborative authoring in wikis; and

videos and images that are uploaded into and shared from

searchable servers. There are many more examples.

Browser and network advances have also permitted the

migration of client-side function from the Personal Com-

puter (PC) to the server-side. Migrated function includes a

large variety of applications from word-processing applica-

tions and email to specialized business applications offered

using the Software-as-a-Service (SaaS) paradigm. Migrat-

ing function from the client PC to the server allows support

of application health and user data to be aggressively man-

aged at a central site. For example, an application on a cen-

tral server can be deployed and thoroughly tested to a degree

not feasible when the application is deployed on individual

PCs. Similarly, the user data underlying an application can

be stored and backed up with qualities of service not easily

achieved on individual PCs. Also, applications and data can

be accessed from any client connected to the web not just a

particular PC.

�
�
��
��
��
�
�
	�

�
�

�
�
�
��

�������	�
��������

��	�
�����
��������

��	������������������

��������������������

��
����
�������� !

"��������!������	�
���

��
�������	�
�����

�������������
��
���	���	#�
�������	�
��

��
�	�����������������

$�	��
����
����	�����

�%!&'

�()""

�*�"�

�'�
+��	�,��

�-��#�
��-����

�'.

����

���

����

���

����

���������� �������	�
�������� ��	������������

!(!/

-"��

0����

1���)*2������	�����	����

�������
�	����	���
�
�	��	

�������������	�
��
��	�

��	����������������������

�����	�����
�������

Figure 1: Web 2.0 Overview

There have also been many advances on the server-side.

Commercial applications have developed interdependencies

that permit sophisticated workflows to collaboratively de-

liver services to consumers and other businesses. Service

Oriented Architecture (SOA) techniques permit interaction

of loosely-coupled, distributed services across the internet.

Loose coupling permits services that depend on different

underlying environments (e.g., operating systems and mid-

dleware) to interoperate. Loose coupling also permits re-

placement of one service (e.g., a bulk mailer) with another,

perhaps more attractive, service.

The increased sophistication of loosely-coupled, inter-

server interactions is not limited to workflow. So-called

server-side mashups permit servers to pull together infor-

mation from a variety of sources to present a single view of

the aggregated data to the user. For example, a server-side

mashup might use the Internet to pull map data from one

server, weather data from another server, and traffic data

from yet another server to create a single, combined view

for the user. Mashups can also be performed on the client-

side, where the browser might present the user with content

from multiple sources in a single window.

The term Web 2.0 is commonly used to refer to the mul-

tiple advances in the World Wide Web covered in this sec-

tion. In Figure 1, we’ve attempted to overlay a summary of

these Web 2.0 features onto the traditional view of a multi-

tier system composed of a web server, an application server,

and a database server. On the left side of the figure we high-

light the nature of the exchange between the thin client and

web server. Technologies like AJAX and Representational

state transfer (REST) are used to drive the Web 2.0 clients.

FLASH is a popular technology for delivering video con-

tent. Along the top of the figure we depict other servers

contributing to client-side mashups, server-side mashups,

and distributed workflows. On the bottom left we highlight

some of the emerging applications discussed in this section.

In the middle bottom we point out that there are multiple

110

stacks that are evolving to support Web 2.0. And finally at

the bottom right we reinforce the point previously made that

much of Web 2.0 is centered around server-side repositories

of data.

Considering the trends outlined in this section we have

identified three key areas where Web 2.0 will impact sys-

tems. First, the movement of function from the client-side

to server-side has resulted in increased network interac-

tion between the client and the server (i.e., “chattiness”).

Second, to support SOA and server-side mashups, the fre-

quency and nature of inter-server transactions are changing.

Third, given the increasing degree of access to an increasing

quantity of user-contributed data, the amount of server-side

data is increasing and the nature in which it is accessed is

changing.

In this paper, our primary goal is to analyze the impact

of Web 2.0 workloads on the server-side. For benchmarks,

we use a commercial application, Lotus Connections, and

a JEE5 Web 2.0 benchmark Pet Store 2. The next section

describes these applications and the framework we built to

drive them.

3. Benchmarks and Workload Design

In this section, we describe the Web 2.0 applications that

we used as our benchmarks, and the infrastructure used to

drive them. We chose to characterize the Web 2.0 features

of two Java-based applications: Lotus Connections and Pet-

Store 2.0, which are described in the following subsections.

3.1 Lotus Connections

Lotus Connections is IBM’s JEE-based social collabora-

tion software for the enterprise [9]. It consists of five com-

ponent services:

• Profiles: The Profile component enables the user to

use attributes such as name, organization, location, re-

porting structure, and interests to find other employees.

• Communities: The Communities component enables

employees sharing a common interest to collaborate

with one another.

• Blogs: The Blogs component provides a mechanism

for employees to express their views and share their

knowledge with other employees.

• Dogear: The Dogear component allows employees to

organize and centrally store bookmarks on a server.

Importantly, bookmarks can also be shared with other

employees.

• Activities: The Activities component helps employees

create and share tasks, to-dos, and best practices.

J2EE Container

Struts

Velocity

RollerWeb UI

Layer

Hibernate

Lucene

RollerBeans

Business

Layer

DB

File

System

Browser

Feed

Reader

Blogs

Client

HTML / HTTP

XML / HTTP

XML-RPC / HTTP

Figure 2: Lotus Connections Blogs Architecture

These five components can be used together or individu-

ally, and can be deployed on individual or shared instances

of an application server. A relational database is used as

the back-end data store. An LDAP server is used to provide

user authentication and directory services. We chose to ana-

lyze the two components that rely most heavily on Web 2.0

features, these are Blogs and Dogears.

Blogs

Blogging has emerged as a powerful Web 2.0 tool for shar-

ing information. Within an enterprise, blogs provide a

mechanism for employees to share their knowledge and ex-

pertise. It provides a convenient, non-intrusive mechanism

to present ideas and receive feedback from other interested

parties. Lotus Connections uses a derivative of the Apache

Roller blog engine. Apache Roller consists of two layers, a

UI layer and a data layer. In the UI layer, the editor is imple-

mented using Struts. Blog rendering is done using Velocity.

In the data layer, Hibernate is used to provide relational per-

sistance and Apache Lucene powers search. Atom feeds for

blogs, blog entries and comments are also supported. Fig-

ure 2 shows the architecture of the Blogs component of Lo-

tus Connections.

Dogear

Dogear is the social bookmarking component of Lotus Con-

nections. It permits users to organize bookmarks with tags,

to store them in a central server, and to share them with

other users. Using Dogear, people can discover bookmarks

that have been qualified by others with similar interests

and activities. The Dogear component also supports Atom

feeds.

3.2 Java Pet Store 2.0

Java Pet Store 2.0 [3] is a reference application for build-

ing AJAX-based Rich Internet Applications (RIA) on a JEE

5 platform. It is developed by the Java Blueprints program

at Sun and source code is available for download. Java Pet

Store 2.0 is an update of the well-known Java Pet Store ap-

plication, and was developed to demonstrate JEE 5 support

111

JEE 5 Container

JSF

JPA DB

File

System

Browser
HTML, JSON / HTTP

Lucene

Figure 3: Petstore Architecture

 !"!#$%!%

&'(%#)'&$*!'$++)'
,--%)'.)'

/012/,3
2/,32/,3&'(%#)'&+4)*!% 2$"5 ,-- 6#!!-7

89:;9 <=>?9=;@A;@B>C <=>?9=;D=E@F@@GH
@9:;9I@9=J C;K@GL; CD?L>9;@B>C E;?>ML; D=E@F@@GH

Figure 4: Crusher Setup

for Web 2.0 features. Petstore 2.0 scenarios include listing

pets for sale, searching for pets to buy, tagging pet listings,

obtaining the geographic location of a pet for sale, and pur-

chasing a pet using paypal. A feature for obtaining maps

of geographic locations demonstrates a Web 2.0 mashup

where services from multiple sources are combined to pro-

vide a new value-added service.

The implementation of Java Pet Store 2.0 follows the

model - view - controller (MVC) design pattern and exploits

technologies introduced in JEE 5, including the Java Persis-

tence API (JPA) for model function and Java Server Faces

(JSF) for view function. The view component demonstrates

the use of AJAX in a JEE 5 environment to support a rich,

interactive user interface. The AJAX components are im-

plemented using the Dojo toolkit. Search is implemented

using Apache Lucene. JavaScript Object Notation (JSON)

is used for some of the data transfers between the server

and the client browser. The architecture of the Petstore 2.0

application is shown in Figure 3.

3.3 Workload Harness and Data Collec-
tion Infrastructure

To facilitate driving our benchmarks, we developed an

infrastructure, named Crusher, which extends the Grinder

tool [2]. Grinder is an open-source load testing tool written

in Java. It can use multiple Java threads, multiple JVMs,

and multiple clients to generate load for an application.

Grinder tests are easily written in the Jython scripting lan-

guage and can drive any load that has a Java API (e.g.,

HTTP, SOAP, REST, RMI, JDBC).

Generating Testcases and Workloads

The Grinder includes a proxy-based tool for capturing

browser-generated HTTP requests. We use this tool to

capture raw HTTP requests generated by our applications.

We then partition the raw HTTP requests into transactions.

Each transaction represents a user-level action and can in-

clude multiple page requests. A workload consists of a mix

of these transactions as specified by the user. The mixes we

used for the data presented in this paper represent common

usage patterns.

For the Lotus Connections workload, we used a deploy-

ment internal to IBM to derive these usage patterns. How-

ever, we are also interested in analyzing the effect of differ-

ent workload mixes, and those that vary with time as part

of future work. We obtained some of the content to popu-

late the databases used by Lotus Connections also from the

internal deployment. This content consists of 100 thousand

users, 29 thousand of whom have blogs, and 16 thousand of

whom have dogear bookmarks, with a total of 68 thousand

blog entries and 168 thousand bookmarks. 65 thousand of

the blog entries have comments. For PetStore 2.0, we used

the sample data that comes with the application.

During a benchmark run, first a transaction is chosen ran-

domly, based on the mix specification. Data needed for the

transaction, like a username or a blog entry, is either ran-

domly generated or randomly chosen from our dataset. To

maintain repeatability, we undo the effects of write trans-

actions (transactions that create new content), by restoring

all databases to their initial state after every run. Table 1

lists the transactions for each of our applications along with

their HTTP characteristics. Note that these characteristics

vary slightly across different invocations of the same trans-

action, depending on the specifics of the request. For ex-

ample, the number of bytes received as a result of a blogs

readEntry transaction depends on the particular blog entry

requested. The last column in Table 1 shows the percent-

age of that transaction in the mix we used to gather the data

presented in Section 4.

Executing Workloads and Collecting Data

Crusher operates on client nodes and log nodes. To gener-

ate load, Crusher distributes the Grinder engine and work-

loads to the clients. Subsequently, for each client, Crusher

starts the Grinder engine with a user-specified workload.

Crusher is controlled by a policy file called the spray

file. The spray file specifies client nodes, various Grinder

properties for each client (number of virtual users, sleep

112

Table 1: Transaction Characteristics. This table lists the transactions in our Web 2.0 workloads and their HTTP characteristics.

For each application, a workload consists of a mix of its transactions. The last column lists the percentage occurrence of that

transaction in the mix used to gather the data presented in the paper. !"#$"%&'(#)*+ ,-. /0120$&$)*+ ,345 /0120$&$)*+ ,)6)7/0120$&$)*+ ,89&0$50#&)*+ ,89&0$/0%0'*0: ; '#<'=>?@ABC@DE FG H I HJH KLGKGJG LMJNOPEQRSTUV IF H I HJH WWFMMJM LMJNAETXEEY I H H HJH WFFZJI IWJF[YY\@DDEST IN L H NKLJZ MIMFFJM IHJMBE[U]^ M H H HJH WLHMZJG ZJFOPEQ_?@A FN H L HJH NZGWGIJI GJGV@`U_?@A LG H I NLJZ IMGKZJL WJKOPEQXEEYRSTUV IF H H HJH WLWMFJF IJK]UE[TERSTUV LF I N LGFFJZ ZHWFZJM HJK
(a) Blogs !"#$"%&'(#)*+ ,-. /0120$&$)*+ ,345 /0120$&$)*+ ,)6)7/0120$&$)*+ ,89&0$50#&)*+ ,89&0$/0%0'*0: ; '#<'=>?@ABCD?EA FG H I FJKL GGLMINKF HOKH>?@ABCPQRS JI I I I FHOHKT HHKMUCABVAW??XYBCX H H I NNG FTFKN HHKMBZV?[?E\]AVAPB@ I I H I JOHKM OKIE^W??XEBCXS MJ I I I NHIGFKT GKF\?\Z]BCPB_ TF I I I TGJOMKM GKM@AV`AA> H I I I NTHGNKF FKMaAbVcB@A TT I I I GHTJJKJ FKJBZV?[?E\]AVAYAE_ACdBEA I I H I GFMKI TKISABCUQW??XEBCXcA?\]A TL I I I FHTFMKL TKISA]AUVcACS?aPB_ L I I I HLOMKT TKISABCUQW??XEBCXPB@S TF I I I MHOINKO NKL?\AaP??]S JO I I I GLJLFHKF NKG@AVeSAC`AA> H I I I HLTIKI HKG

(b) Dogear !"#$"%&'(#)*+ ,-. /0120$&$)*+ ,345 /0120$&$)*+ ,)6)7/0120$&$)*+ ,89&0$50#&)*+ ,89&0$/0%0'*0: ; '#<'=>?@A BC D D DED FGBBHIEG BJEBKALAMNOPNQR GD D B DED JISCISEF BDEGMTNTL?U SH D B DED JJIJDCEH VBEJKALAMNWTU BG D D DED BGGDCBEJ VDEFKATQM> JD V J VJCEJ JVGVGBED CEC@TX F D D DED VHFCBFED HEG@TXYTNAU?QR BD V D VDFEJ BBFGHJED HEGNTUK BG D D DED BSCSBBES JESKALLAQ JF V J GDSVHES FGSFGGED VEG
(c) PetStore

113

Figure 5: Sample Report. The report is generated from multiple logs that track a variety of metrics on the machines in our

distributed setup to provide a complete, one-glance view of a run.

time between requests, duration of the test run, number of

processes, and number of threads), log nodes, and the type

of statistics to be collected from each log host. Crusher uses

ssh to drive the client and rsync to gather logs. Crusher is

implemented in Jython and Python. A typical crusher setup

is shown in Figure 4.

When requested by the user, Crusher collects statistics

from the log nodes. The client nodes serve as log nodes

for Grinder transaction logs. Crusher uses other log nodes

to collect OS and middleware logs. Statistics collected

and processed by Crusher include the basic client transac-

tion statistics generated by Grinder, server-side CPU usage

statistics from vmstat for both the application and database

server (A- and D- in Figure 5), application server statistics

from the Websphere Performance Monitoring Infrastructure

(PMI) subsystem, server-side middleware error logs, and

server-side logs containing hardware counters. After col-

lecting logs from the log nodes, a Crusher tool is used to

mediate the logs and output summary statistics into two

spreadsheets. One of the two spreadsheets contains a vari-

ety of statistics for user-defined intervals. Figure 5 shows a

sample output containing some of these statistics. The other

spreadsheet contains summary statistics for each HTTP re-

quest used in the specified workload.

4. Analysis

In this section we present our analysis of the benchmarks

described in Section 3. We begin with a description of our

experimental setup and methodology, and follow with a de-

tailed analysis at different levels in the system stack. In or-

der to understand how our JEE-based Web 2.0 benchmarks

relate to current enterprise server benchmarks, we also in-

clude results for Trade6 [5], a JEE online brokerage bench-

mark developed by IBM.

4.1 Experimental Methodology

The benchmarks analyzed in this paper run in a tradi-

tional three-tier configuration with a IBM DB2 9.1 back-end

tier and a client/driver front-end tier. The middle tier runs

the benchmark applications and we report results for this

tier only. The benchmark applications are deployed on an

application server. We use the IBM WebSphere Application

Server ND 6.1.0.13 for our Lotus Connections benchmark

and the GlassFish 9.1 application server [1] for the Pet Store

2.0 benchmark. Both application servers are run in the IBM

Java Virtual Machine [10] with a heap size of 512 MB.

For the data presented in this paper, we run the middle

tier on a 2-socket, 4-way Power5 multiprocessor running

AIX 5.3, configured with 8GB of DRAM. The remaining

components, including the database and LDAP servers, and

the Grinder clients, are run on machines dedicated to gener-

ating load. Figure 6 illustrates our experimental setup and

also shows details about the hardware and software used.

Given the multi-machine setup and three-tier configura-

tion of our benchmarks, we had to spend considerable ef-

fort in tuning different components (e.g., application server

thread pool sizes) in our system, to ensure that middleware

and infrastructure bottlenecks do not distort our analysis,

and that we are able to keep the system under test at least

95% busy. As such, our setup represents the state-of-the-art

in enterprise application deployment.

We chose the number of virtual Grinder users required

to load the system by observing the throughput of the work-

load for different numbers of virtual users. As seen in Fig-

ure 7, the throughput curve flattens out after an initial in-

crease as more users are added. For each workload, we pick

a point on the relatively flat portion of the curve, following

the knee, to select the number of virtual users to use. The

jagged nature of the PetStore curve is a result of concur-

rency issues that cause transaction roll-backs as the number

of write requests increases. This problem needs further in-

vestigation and might require modifications to the applica-

tion code. For the rest of the data in this paper, we used 40

virtual users for blogs and dogear, and 15 for PetStore.

4.2 CPU Utilization

Figure 8 shows the CPU utilization on the server ma-

chine when running the workloads with the mixes outlined

in Section 3 and the number of virtual users determined

above. It is necessary to ensure that the machine hosting

114

 !"#$!%&'()*+',-.* &+)+'./-'01234567389: ;<=>?@<A< B??CDEFGDHI ><AJ<A KLMLNLMOPQRSTU VRWWXYSZRWU [\]\^_>`a bCFccdDc@ B??CDEFGDHI ><AJ<APeXSfSRgX ^\]_hij klmnopqrs tuqvwkx ylzz{|} qn ~�� u�
��� ��� �,����� ��� ���123456����� 7389: �9�3� �������

��� LMhij klmn¡pqrs tuqvwk¢x yl£{|}PAF¤¥Dc¦ GH FJHD¥ §¨_
 !"#$!% !"#$!%

Figure 6: Experimental Setup.

 !"
"!# #!
$ $!%
%!

& '('&)()& *(*& +(+& &(&& ,(,& -(-& .(.& /(/&012345 67 89:5;1<=> 1?45?
@AB

CDEFGHEFIJKLIMNMEKI

Figure 7: Throughput vs. Virtual Users. This Figure shows the

transactions per second on the Y axis as the number of virtual

users is gradually increased.

 ! "
$ %
& ' (
) !

*+,-. /,-012 30454,20 621708
9:;<=

>?@ABCD@BE

Figure 8: CPU Utilization. CPU utilization on the Application

Server broken down into percentage time spent in user mode

and system mode.

Table 2: Workload Characteristics. This table primarily lists

the HTTP characteristics of our workloads. Rows 2 to 6 rep-

resent per transaction statistics. The bytes sent and received

metrics capture the data flow from the client to the server. !"#$ %"#&'()&*+*"(& ,('-&./01 2344 5236 56372 89:;</ =>?@>ABACBDE FF376 743FG 7535: 53590H1/ =>?@>ABACBDE 43FF 4375 4352 4348IJIK =>?@>ABACBDE 43G4 4357 4362 4LMB>A 1>EBCBDE 22364 :4369 :G437: 53:LMB>A =>N>OP>QCBDE 6:5GF3G7 52::2G388 9G6GF43:9 5479FRSQ> 1OT> UVLW F43G 5636 7:3: F839
the system under test is sufficiently busy so that the gath-

ered data captures the behavior of the workload. This is

especially true for hardware performance counter measure-

ments. For all results we start with a 30 minute warm up pe-

riod and follow with a 30 minute measurement period. As

seen from the figure, the CPU is at most 5% idle and most

of the time is spent executing user-level code. Compared to

Trade6, the Web 2.0 workloads spend less time executing

system-level code. We did not perform further analysis at

the Operating system level since most of the time is spent

in user-level code.

4.3 User and Program-level Characteriza-
tion

Table 2 lists some HTTP and application level statistics

collected over the 30 minute measurement interval. The first

row lists transactions per second, followed by rows listing

the total number of http GET, POST and AJAX requests per

transaction, and the amount of data exchanged (excluding

headers) with the server per transaction. The last two rows

give an estimate of the memory footprint of these programs

in terms of dynamic code size. Code size is calculated by

tracking classes loaded by the JVM and includes code from

Java libraries and the application server. All benchmarks,

except PetStore 2.0, are deployed on the same system stack.

The application server for PetStore is different from the

115

 ! !" #! #!" $! $!" %! %!"

&'()* +(),-. /,010(., 2.-3,4

567
89:;<=9>?? @A BCD=9>?? @A BEDF=D G>HIJ ?>9;KJAF=D L;M;J9NJ>J:; OIHH89:;< PQRS TOU9AVG<>KJ: OIHU<;WIJ9IXKU;K>?9AYJ>J:; OIHH U;K>?9ARXOU?;9IXK RAJ?;H

Figure 9: Stall Breakdown

other benchmarks and could lead to some differences in

the use of runtime services and libraries. The chattiness

of our Web 2.0 workloads is indicated by the presence of

AJAX requests, and by the increase in number of HTTP

GET and POST requests. There is also a marked increase

in the amount of data flowing from the client to the server

in the form of user generated content. PetStore makes the

heaviest use of AJAX, and also has the largest amount of

data exchange with the server. Note that AJAX requests

also contribute to the traffic from the client to the server,

although the size of each AJAX request is relatively small.

Trade6 only has a single POST request used for user login

and no other significant data flowing from the client to the

server as seen in the table.

4.4 Stall Breakdown

As seen above, the user and application-level character-

istics illustrate differences between the Web 2.0 workloads

and the Trade6 workload. We used microarchitectural re-

sults to evaluate how these differences manifest themselves

at the architectural level. These results are generated us-

ing the Power5 Performance Monitoring Unit (PMU). The

PMU can be programmed to measure up to four concurrent

processor events at a time, using dedicated per-thread coun-

ters. From the numerous events that can be tracked using

these counters, we choose a subset of interesting ones. Per-

formance counters are sampled after the 30 minute warmup

period, with three, 30-second sampling intervals for each

set of counters. We use the average counter value (across

the three runs) to compute results.

The PMU counters can be programmed to be incre-

mented at each stall of the processor’s commit stage, such

that each counter corresponds to the cause of the stall. Us-

ing these counters, we calculate the cycles per instruction

(CPI) for each of our workloads, and break it down into

its components. This allows us to understand how the cy-

cles are being spent, and more interestingly, where the stalls

are coming from. Figure 9 shows the CPI breakdown us-

Table 3: Instruction Mix. This table shows the percentage of

load, store, branch, and floating point instructions executed

for the benchmarks under study.

Blogs Dogear PetStore Trade6

% loads 25.91 22.96 30.78 29.42

% stores 12.18 13.15 16.54 18.74

% branches 24.64 22.58 21.80 20.09

% FPU 0.06 0.15 0.32 0.30

ing a stacked column format. The height of the column

shows the CPI. The bottom-most component represents use-

ful work, i.e., cycles spent in successfully completing in-

structions, whereas the rest of the components represent

processor stalls. For all workloads analyzed, data cache

misses account for a significant portion of the stalls. For the

Web 2.0 workloads, stalls due to instruction cache misses

and branch mis-prediction are insignificant, whereas for the

Trade6 workload, instruction cache misses account for al-

most as many stalls as data cache misses. The difference in

instruction cache behavior is indicative of relatively smaller

instruction working set sizes for the Web 2.0 workloads,

compared to Trade6.

Table 3 lists the percentage of load, store, branch, and

FPU instructions found in the instruction stream. We can

see from the table, that the instruction mix for these appli-

cations does not vary significantly.

4.5 Cache Behavior

Figure 10 provides additional insight into the data and

instruction cache miss components of the stalls by quanti-

fying the miss rates and indicating where they are serviced

from (access latency). For all workloads, most of the cache

misses are serviced from the 1.8 MB shared L2 cache, with

a smaller fraction being serviced from the off-chip 36 MB

L3 cache. The Pet Store workload has a comparatively high

number of data cache misses being serviced from the lo-

cal memory, leading to a higher number of data cache miss

stalls, in spite of lower miss rates, compared to the Trade6

workload.

To summarize, transactions in the Web 2.0 workloads an-

alyzed differ significantly from those in traditional OLTP

workloads like Trade6, in the number of HTTP requests

and amount of data transfer that they generate. At the ar-

chitectural level, stalls due to data cache misses form the

dominant component of stall cycles. Data cache behavior

characterization of PetStore (relatively high number of re-

quests to memory) seems to indicate a need for better data

prefetching algorithms. Contrary to behavior exhibited by

other Java enterprise applications, like Trade6 and SPEC-

jAppServer [14] instruction cache misses do not account for

a significant portion of stall cycles.

116

 !"#
#!"$
$!"

%&'() *'(+,- .+/0/'-+ 1-,2+3456789:;
<=>>;>?;@
5AA=B>C@D9
C=EB> FGHIJKGL MN OPQPFGHIJKGL MN ORFGHIJKGL MN OS

 !"#
#!"$
$!"

%&'() *'(+,- .+/0/'-+ 1-,2+34567879:
;<==:=>:?
5@@6A=B?C
7B<DA= EFGHIJFK LM NOPOEFGHIJFK LM NQEFGHIJFK LM NR

Figure 10: Cache misses and where they are serviced from. The graph on the left plots L1 Dcache misses and where they are

serviced from, and the graph on the right similarly plots L1 Icache misses.

5. Related Work

We are not aware of any previous work on Web 2.0 work-

load characterization. Since the benchmarks we studied in

this paper are JEE-based, the closest body of related work

is the characterization of commercial Java workloads and

application servers.

Several papers have focused on analyzing and opti-

mizing enterprise Java benchmarks like Trade6, SPEC-

jAppServer [7] and other Java OLTP workloads, especially

at the architectural level [11, 14, 12, 18, 4]. Kunkel et al.

described a general methodology for analyzing the perfor-

mance of servers running commercial workloads [13]. Jann

et al. compared the architecture and OS-level characteris-

tics of Trade6 on two different IBM pSeries servers with

the aim of finding bottlenecks and possible improvements

in the OS [12]. Tseng et al. studied the scalability, with re-

spect to cores and threads, of several commercial workloads

running on Sun Microsystem’s Niagara system [18]. Nag-

purkar et al. used hardware performance counters to study

the behavior of Trade6 and SPECjAppServer2004 and pre-

sented an instruction prefetching algorithm after observing

that instruction cache misses are a significant problem for

the applications they studied [14]. Shuf and Steiner also an-

alyzed the performance of SPECjAppServer, and like this

paper, used hardware metrics [17]. The above papers are the

most comparable to our system, since they are also based

on IBM’s WebSphere Application Server, and indeed, their

findings are consistent with ours. But unlike our paper, they

do not focus on Web 2.0 behavior.

Xian et al. investigated how JEE application servers de-

grade under stress [19]. Most of the experiments focus on

garbage collection behavior, which does not degrade grace-

fully under load. Our paper focuses on the normal case in-

stead of the exceptional case, uses Web 2.0 instead of tra-

ditional workloads, and offers a broader perspective and a

richer set of metrics.

Some papers characterize single-host Java workloads.

Dieckmann and Hölzle performed one of the earliest work-

load characterizations for Java [8]. They focused on ob-

ject characteristics like lifetime, size, type, etc.. Shuf et

al. characterized the memory subsystem behavior of the

SPECjvm98 benchmarks and of pBOB, a precursor to the

SPECjbb2000 benchmark [16]. Their paper is similar to

ours in that it presents a breakdown of cache miss behavior.

Blackburn et al. developed the DaCapo benchmarks, a suite

of Java programs for performance evaluation [6]. Like our

paper, their paper describes new benchmarks along with a

characterization using both hardware and software metrics.

None of these three papers addresses Java application server

behavior, let alone Web 2.0, which is the focus of our work.

6. Conclusions and Future Work

In conclusion, we have made a detailed characterization

of several applications that exploit Web 2.0 technologies

running on a IBM Power5 system. While we have found

some interesting differences between traditional JEE appli-

cations and Web 2.0 JEE applications, the server-side im-

pact of these applications is not significantly or consistently

different from that of Trade6. More analysis is required to

isolate the effects produced by Web 2.0 features.

For future work we plan to perform more analyzes on

our current workloads, especially to analyze the effects of

the data-centric nature of Web 2.0 applications. We also

plan to examine additional Web 2.0 workloads. In par-

ticular, we plan to examine workloads that have a heavy

exploitation of inter-server communications exhibited by

server-side mashups and workflows operating in a SOA, and

workloads where the mix of Web 2.0 operations varies with

time. Finally, we plan to evaluate other platforms (including

non-Power systems) to assess whether or not certain archi-

tectures are better suited for Web 2.0 workloads.

117

Acknowledgments

We thank Martin Hirzel, and the anonymous reviewers

for providing useful comments on this paper.

References

[1] The Glassfish Open Source Application Server.

https://glassfish.dev.java.net//.

[2] The Grinder Load Testing Framework. http://

sourceforge.net/projects/grinder.

[3] Java PetStore 2.0 Reference Application. PetStore

2.0. https://blueprints.dev.java.net/

petstore/.

[4] Luiz André Barroso, Kourosh Gharachorloo, and

Edouard Bugnion. Memory system characterization

of commercial workloads. Special Issue: Proceedings

of the 25th annual international symposium on Com-

puter Architecture (ISCA ’98), 26(3):3–14, 1998.

[5] IBM Trade Performance Benchmark. Trade6.

https://www14.software.ibm.com/

webapp/iwm/web/preLogin.do?source=

trade6.

[6] Stephen M. Blackburn, Robin Garner, Chris Hoff-

man, Asjad M. Khan, Kathryn S. McKinley, Rotem

Bentzur, Amer Diwan, Daniel Feinberg, Frampton

Daniel, Samuel Z. Guyer, Martin Hirzel, Antony

Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,

Aashish Phansalkar, Darko Stefanović, Thomas Van-

Drunen, Daniel von Dincklage, and Ben Wiedermann.

The DaCapo benchmarks: Java benchmarking devel-

opment and analysis. In Object-Oriented Program-

ming, Systems, Languages, and Applications (OOP-

SLA), 2006.

[7] Standard Performance Evaluation Corpo-

ration. Specjappserver2004 benchmark.

http://www.spec.org/jAppServer2004/, 2004.

[8] Sylvia Dieckmann and Urs Hölzle. A study of alloca-

tion behavior of the SPECjvm98 Java benchmarks. In

European Conference for Object-Oriented Program-

ming (ECOOP), 1999.

[9] IBM Social Networking Software for the

Enterprise. Lotus Connections. http:

//www-306.ibm.com/software/lotus/

products/connections/.

[10] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley,

and V. Sundaresan. Java just-in-time compiler and

virtual machine improvements for server and middle-

ware applications. In Proceedings of the 3rd Virtual

Machine Research and Technology Symposium (VEE),

2004.

[11] Morris Marden Harold W. Cain, Ravi Rajwar and

Mikko H. Lipasti. An architectural evaluation of

java tpc-w. In International Symposium on High-

Performance Computer Architecture (HPCA), 2001.

[12] Joefon Jann, R. Sarma Burugula, Niteesh Dubey, and

Pratap Pattnaik. End-to-end performance of commer-

cial applications in the face of changing hardware.

Technical Report 24418, IBM Research, November

2007.

[13] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J.

Mullins, B. O’Krafka, H. Rosenberg, S. P. Vander-

Wiel, P. L. Vitale, and L. D. Whitley. A performance

methodology for commercial servers. IBM Journal of

Research and Development, 44(6):851–872, 2000.

[14] Priya Nagpurkar, Harold W. Cain, Mauricio Serrano,

Jong-Deok Choi, and Chandra Krintz. Call-chain soft-

ware instruction prefetching in j2ee server applica-

tions. In International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), 2007.

[15] Tim O’Reilly. Web 2.0 Compact Defini-

tion: Trying Again. http://radar.

oreilly.com/archives/2006/12/

web-20-compact-definition-tryi.html.

[16] Yefim Shuf, Mauricio J. Serrano, Manish Gupta,

and Jaswinder Pal Singh. Characterizing the mem-

ory behavior of Java workloads: A structured view

and opportunities for optimizations. In Measurement

and Modeling of Computer Systems (SIGMETRICS),

2001.

[17] Yefim Shuf and Ian M. Steiner. Characterizing a com-

plex J2EE workload: A comprehensive analysis and

opportunities for optimizations. In International Sym-

posium on Performance Analysis of Systems and Soft-

ware (ISPASS), 2007.

[18] Jessica H. Tseng, Hao Yu, Shailabh Nagar, Niteesh

Dubey, Hubertus Franke, Pratap Pattnaik, Hiroshi In-

oue, and Toshio Nakatani. Performance studies of

commercial workloads on a multi-core system. In In-

ternational Symposium on Workload Characterization

(IISWC), 2007.

[19] Feng Xian, Witawas Srisa-an, and Hong Jiang. Inves-

tigating the throughput degradation behavior of Java

application servers: A view from inside a virtual ma-

chine. In Principles and Practice of Programming in

Java (PPPJ), 2006.

118

