



The scarcity of publicly available storage workload traces of

production servers impairs characterization, modeling

research, and development efforts across the storage industry.

Twelve sets of storage traces from a diverse set of Microsoft

Corporation production servers were captured using ETW

(Event Tracing for Windows) instrumentation. Windows

Server 2008 dramatically increases the breadth and depth of

ETW instrumentation, and new trace capture and visualization

tools are available in the Windows Performance Tools kit.

Additional analytical tools were developed to analyze and

visualize traces captured from Exchange, software build and

release, Live Maps, MSN storage, security authentication, and

display advertisement platform servers. This paper contains a

first set of characterizations for these traces, including simple

block-level statistics, multi-parameter distributions, rankings of

file access frequencies, and more complex analyses such as

temporal and spatial self-similarity measurements. Trace data

visualizations enable the examination of workload parameters,

subcomponents, phases, and deviations from predicted

behavior.

I. INTRODUCTION

BTAINING comprehensive traces of storage activity on a

wide range of production servers is, to say the very

least, a challenging undertaking. Making the traces publicly

available increases the difficulty by an order of magnitude.

The scarcity of such traces over the last 15+ years attests to

the obstacles that must be overcome to achieve this goal.

Starting in late 2007, Microsoft began tracing the storage

workloads of a variety of its corporate production servers

specifically to support internal and external researchers and

developers of storage hardware and software. Windows

Server can selectively enable extensive instrumentation via

Windows command-line utilities or WMI (Windows

Management Infrastructure) calls.

Initial samples of production server storage traces are

being publicly distributed via the online trace repository

provided by SNIA (Storage Networking Industry

Association) [10]. While the initial production traces

analyzed in this report are 5-24 hours in duration and include

primarily file and disk I/O events, the end goal is to make

longer and more comprehensive traces publicly available as

the process for automated capture, verification, analysis,

confidential string obfuscation, and distribution of such

traces stabilizes.

A variety of statistical parameters are extracted and

tabulated for twelve unique trace sets. These basic

Authors are with Microsoft Corporation, Redmond, WA 98052 USA

(e-mail: swaroopk, bworth, qizha, vsharda @microsoft.com).

parameters are useful for identifying a few general workload

behaviors and for selecting specific traces for deeper

analysis. Several visualizations of individual and

combinations of characteristics are presented. Complex

interrelationships such as self-similarity are explored as

well.

Storage traces provide insights on design and

implementation tradeoffs of file systems, file and block

caches, storage drivers, storage controller firmware, and the

various hardware components of a modern server storage

subsystem. For example, the use of nonvolatile memory

(NVM) in the server storage stack is receiving significant

attention now that enterprise-quality Flash memory

components have dropped in price, increased in per-unit

capacity, improved in reliability, and addressed the random

write performance penalty traditionally associated with the

technology. Comprehensive storage traces of production

servers will be crucial in the determination of what forms

and configurations of NVM are appropriate for different

workloads. Even application developers can take advantage

of storage traces of specific workload scenarios in order to

improve the manner in which I/Os are issued.

The remaining sections in this paper are as follows:

Section II provides background and related work. Section III

describes the new traces analyzed in this report. Section IV

lists a wide variety of parameters and metrics associated

with a server storage workload. It also includes a tabular

overview of the new traces’ basic characteristics. Section V

provides a deeper look into some of the behavior captured in

the traces. Section VI extends this analysis by

demonstrating how some of these storage workloads exhibit

self-similarity both in time and in space. Section VII

provides a summary and some directions for future work.

II. BACKGROUND AND RELATED WORK

A. Traces vs. Synthetic Workloads

Typical uses of server storage traces can be divided into

three broad areas: analysis of the characteristics and

behaviors of the specific systems or workloads traced; input

for trace-driven simulation or modeling; and extraction of

parameters and heuristics to configure synthetic workload

models. In the latter two usages, there are purposes beyond

the context of the traced environment.

While trace-driven simulation of storage subsystems has a

number of limitations, the design and use of synthetic

workload models is still largely dependent on the availability

of traces from which characteristics can be selected,

Characterization of Storage Workload Traces

from Production Windows Servers

Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, Vishal Sharda

O

extracted, and subsequently generalized. Unfortunately,

storage traces are often difficult to characterize due to the

complexity of interactions between multiple request streams

and the uncertainty of whether or not they are truly

representative of environments similar to the ones traced. It

is also difficult to prove that even the most detailed synthetic

models capture all of the important properties of a given set

of traces. Nevertheless, there are a number of advantages of

utilizing synthetic models for analysis instead of the server

storage workload traces themselves:

 Synthetic models have the flexibility to observe

behaviors with alternative parameters or heuristics

 Large sets of comprehensive traces are difficult to

obtain due to security and performance impact

concerns

 Even when compressed, lengthy storage traces require

significant on-line or archival storage

So, while a trace is an accurate representation of a specific

set of activities on a specific server and thus can be used to

accurately drive trace-driven models, the ideal purpose is the

transformation of a set of representative traces into a set of

characteristics that enable modeling and simulation across a

wider spectrum of system environments.

B. Capturing and sharing server storage workload traces

The ideal storage workload trace methodology includes all

of the features given below.

 Administrative access to production servers

 Minimum overhead imposed during trace capture and

zero overhead when tracing is disabled

 Coverage of all phases of activity and all data sets

across multiple equivalent platforms for months/years

 Sufficient trace event types captured to supply all

future analyses (impossible, so capture as much as

feasible without adversely impacting other features)

 Correlated file block and disk block events

 Full disclosure of software, hardware, and firmware

configuration information during the trace period

 Self-describing portable trace event formats

 High compression factor for trace files

 Selective obfuscation of trace event elements (e.g.,

file or process names)

 Selective trace event element decryption to maintain a

single trace format [2]

Since this combination of features cannot be simultaneously

realized, the inherent tradeoffs must be carefully evaluated.

C. Characterizing server storage workload traces

As is demonstrated in Section IV, a long list of

characteristics can be extracted from a storage workload

trace. The interaction between different basic characteristics

must also be identified and prioritized by overall impact [4]

[12] [13] [14] [19] [27]. If the trace characterization is

driving an open model, the observed response times of the

traced system may or may not be utilized. Similarly, if the

model is closed, then arrival times may or may not be

utilized in favor of maintaining a certain level of I/O

concurrency [30].

The possible existence of self-similarity in real-world disk

traffic was first proposed in [4]. Using two disk-block IO

traces, self-similarity analyses in disk arrival patterns and

disk access patterns were provided in [5]-[7]. A combination

of the ON/OFF source model and Cox’s model described

self-similar behavior in these two dimensions. Binomial

multifractals have been used to generate synthesized IO

workloads that display self-similarity [8]. Entropy plots can

quantify the spatial and temporal correlation of disk

requests, and an efficient entropy-based model was proposed

to capture all the characteristics of real spatio-temporal

traffic [29]. All these related works demonstrate the

existence of self-similarity in storage IO traces, which must

therefore be considered in analytic modeling to capture

accurate storage performance.

D. Storage workload tracing facilities

Event Tracing for Windows (ETW) has been the core

tracing component built in to Windows operating systems

since Windows 2000. ETW provides a high performance,

low overhead, and highly scalable tracing framework. It uses

efficient buffering and non-blocking logging mechanisms

with per-CPU buffers written to stable storage by a separate

thread. Windows Server 2003 and 2008 releases allow

tracing to be enabled and disabled dynamically without

requiring system reboots or application restarts. Many

Windows components, including the kernel, produce

numerous events describing their behavior. Typical events

are discrete time-stamped trace points, but sampling and

statistical data captures are also possible. Storage related

instrumentation includes, but is not limited to: initiation and

completion disk events for reads, writes, and flushes; and

file events for creates, deletes, reads, writes, and attribute

queries and updates.

One predecessor of ETW is VTrace, which provides

kernel event instrumentation through patching and hooking

Windows NT and Windows 2000 by undocumented and

unsupported means [15]. Other operating systems also

provide embedded support for storage workload tracing,

such as the “io” provider in Solaris’ DTrace [9], the Veritas

vxtrace utility in HP-UX [28], the Tracefs file system filter

for Linux [2], and the disk I/O workload characterization

tool in VMware [1].

E. Published server storage block-level traces

Various server storage block-level traces gathered and

published in the last 15 years are listed below.

 1992: 4 months of disk block traces from the Snake

file server at U. C. Berkeley serving nine clients

without local storage [20]

 1992: 2 months of disk block traces from the Cello

shared compute/mail server used by a HP Labs

research team [20]

 1996: 3 months of disk block traces from the same

Cello shared compute/mail server

 1999: 1 year of disk block traces from the same Cello

shared compute/mail server [31]

 2000: 1 hour of disk block traces from an OpenMail

mail server for 1400 users at HP Labs [12]

 2000: 1 month of file block traces from a web server

(WEB) for an online library at U. C. Berkeley [19]

Note that this list does not include storage traces of scientific

workloads or traces without block-level events, both of

which are beyond the scope of this paper.

Storage traces of well-understood benchmarks are useful

to verify tracing, postprocessing, modeling, and simulation

infrastructures. Since benchmarks are predefined models of

steady-state workload behavior, extracting workload

characteristics from traces of benchmarks may be easier than

extraction of production workload characteristics, albeit of

less value. Some benchmarks used for server storage

analysis are given below.

 TPC-C [14] [21] [29]

 TPC-D [11] [12] [22]

 TPC-H [14] [17] [24]

 FileBench [1] [16]

 DBT-2 [1] [3]

 Postmark [2]

 AM-Utils [2] [18]

Conclusions about real-world behavior drawn from analyses

of benchmark traces are only as accurate as the benchmarks’

accuracy in representing real-world environments.

III. SERVER STORAGE WORKLOAD TRACES

This section describes twelve of the initial production

server traces and two database benchmark traces. The traces

referenced in this report consist of ETW events enabled in

the Windows kernel. A post-processing script library was

developed to extract the reported workload characteristics

and metrics.

The Windows Performance Tools kit (WPT) is an

extensible performance analysis toolset that provides high-

level control and decoding of ETW events. It includes a

comprehensive visualization tool for detailed analyses of a

wide range of system activities. This tool provides powerful

interactive summary tables and graphs with dynamic

grouping, sorting, and aggregation capabilities.

The traces analyzed in this paper are broken into intervals

to reduce the size of individual traces and make analysis and

visualization easier. The duration of the interval is adjusted

based on the storage activity of the workload to keep the size

of the individual traces manageable.

A. Live Maps front-end and back-end servers (LM)

Virtual Earth is a feature of Live Maps that displays

satellite images and photographs of locations. The tile front-

end server (TFE) takes a user request for a location and

passes it to the tile back-end server (TBE). The TBE hosts a

portion of the map imagery. It accesses the image tiles from

a disk and sends them to the TFE, which then mashes up the

image by adding routes, markers and other relevant

information and sends it back to the user. The traces from

the TFE and TBE cover a 24-hour period and are broken into

1-hour intervals.

B. Display Ads Platform data and payload servers (DAP)

The purpose of the data server (DS) is to be a caching tier

between the front-end server and the payload server (PS). A

front-end server makes an advertisement request with a user

id to the DS. The DS looks up the user id in the cache,

appends any information available for that user to the

request, and passes the request to the PS. The PS is

responsible for ad selection. The traces from the DS and PS

cover a 24-hour period and are broken into 30-minute

intervals.

C. Exchange server (Exch)

The Microsoft Exchange 2007 SP1 server is a mail server

for 5000 corporate users. It is a 4-socket, dual-core system

with 4 GB of memory. The storage consists of two 146 GB

SAS drives in a RAID-1 configuration, six data arrays of

fourteen 146 GB SAS drives, and two log arrays of eight

146 GB SAS drives configured as RAID-10. One trace

covers a 5-hour peak load period on a weekday afternoon.

Another trace covers a 24-hour weekday period. The traces

are broken into 15-minute intervals.

D. MSN storage metadata and file servers (MSN)

The CFS server stores metadata information and blobs

correlating users to files stored on the back-end file server

(BEFS). The BEFS provides the files requested by CFS. The

servers are used by several Live data services. The traces

from the CFS and BEFS cover a 6-hour period and are

broken into 10-minute intervals.

E. Windows build server (WBS)

The WBS produces a complete build each day for the

32-bit version of the Windows Server operating system. It is

a 2-socket quad-core system with 8 GB of memory. The

storage consists of eight 146 GB disks configured as

RAID-0. To capture the complete build process as well as

any disk activity during idle periods, the trace covers a

24-hour period and is broken into 15-minute intervals.

F. Developer tools release server (DTRS)

The DTRS is a file server accessed by more than

3000 users to download various daily builds of Microsoft

Visual Studio (copied from dedicated build servers). It is a

2-socket single-core system with 2 GB of memory. The

storage consists of a single Vdisk of 40 GB configured as

RAID-10 storage. The Vdisk is part of a 219-disk SAN. The

traces from the DTRS cover a 24-hour period and are broken

into 1-hour intervals.

G. RADIUS authentication and back-end servers (RAD)

The RADIUS authentication server (AS) is responsible for

worldwide corporate remote access and wireless

authentication. It runs the IPSec NAP scenario. Data comes

in via SQL replication on the back-end SQL server (BE).

The traces from the AS and BE cover an 18-hour period and

are broken into 1-hour intervals.

H. Database benchmarks: TPC-C and TPC-E

TPC-C is an online transaction processing (OLTP)

benchmark simulating an order-entry environment [21]. It is

a mix of five concurrent transactions of different

complexities. TPC-E is the successor of the TPC-C

benchmark and simulates the workload of a brokerage firm

[23]. TPC-E transactions are more complex than those of

TPC-C, and they more closely resemble modern OLTP

transactions. TPC-E has lower storage throughput

requirements than TPC-C. The TPC-C trace covers

5 minutes of a steady state, fully scaled workload running on

a 4-socket, dual-core system with 64 GB of memory. The

storage consists of 14 RAID-0 disk arrays of 28 disks each.

The TPC-E trace covers 10 minutes of a steady state, fully

scaled workload running on a 4-socket quad-core system

with 128 GB of memory. The storage consists of 12 RAID-0

disk arrays of 28 disks each.

IV. STORAGE WORKLOAD METRICS AND PARAMETERS

For the majority of storage metrics and parameters,

computing the means and variances is insufficient to

characterize a trace accurately. Histograms typically

provide a good representation as long as they are sufficiently

fine-grained. Analysis of specific data points may reveal

standardized distributions (e.g., normal, gamma, and

exponential) that provide a good match for standard storage

workload parameters such as: read/write ratio, request size

and alignment, interarrival rate, response time, concurrency

(e.g., queue depth), disk number, and file, partition, or disk

offset (Logical Block Number). Previous traces indicate

heavy-tailed distributions for a range of spatial and temporal

parameters [6] [7].

Spatial locality and sequentiality refer to the “distance”

between blocks referenced in a specific window of time or in

a specific window of requests. Spatially adjacent requests in

the trace can be extracted from the stream of IOs targeting

each disk, so the percent of sequential requests and the run

lengths of sequential bursts are easily computed along with

the logical distances (jumps) between sequential streams.

Multiple concurrent streams of activity or streams with

“holes” complicate the extraction and representation of

sequentiality [11]. One way to detect mixed or fragmented

streams is by comparing each request offset not only against

the immediately previous request offset and length, but also

to a window of N previous requests [1]. More complex

algorithms may reconstruct individual streams and allow the

formulation of per-stream models of behavior with their own

basic storage workload parameter distributions and even

cross-stream interactions and dependencies [30].

Temporal locality refers to length of time between

accesses to the same blocks of data. Average block lifetimes

are visible as overwrites at the disk level and as deletions,

truncations, and overwrites at the file level [19].

The vast majority of server storage workloads are not

steady state but rather fluctuate in intensity and behavior

throughout the day, week, month, and year. Accurate

workload characterization means generating different

parameter sets and values for different workload phases.

Burstiness metrics for smaller time scales reflect fluctuating

interarrival times between requests, thereby creating bursts

of activity interspersed with idle periods.

Analysis of file block usage can identify correlations (or

the lack of correlation) between all of the above metrics and

file-specific data such as file size, file lifetime, file attributes

(e.g., write-through, sequential, or temporary) and file type

(e.g., based on filename suffixes or the names of the

containing directories). Metadata traffic can also be

separated out at the file event level.

While the disk block events in the initial traces do contain

filenames, the relationships between file blocks and disk

blocks are not easily determined except for the case of hard

page faults. Still, the event data is sufficient to extract

workload information about the “heat” of various file sets,

the identification of files that are read-only/mostly or write-

only/mostly, the mixture of file types, and any other

correlations that do not require knowledge of file offsets.

Table 1 gives a set of basic metrics extracted from the

new traces. This table provides a high-level overview to aid

in trace selection for specific analysis. As mentioned at the

beginning of this section, statistical averages are insufficient

to characterize most real-world traces, but they can be

helpful in selecting traces of potential interest.

Explanations for some of the metrics are given below.

 IO Rate shows a miniature graph (Sparkline [25]) for

each workload’s IO throughput as it varies over the

duration of the trace

 Average queue length on initiation is taken using

samples at each request arrival time – not as an

average over time

 Average system interarrival refers to the interarrivals

of all requests regardless of disk

 Average disk interarrival refers to interarrival deltas

between requests to the same disk

 % sequential IOs initiated includes only those

requests that are exactly sequential (no “holes”) and

uninterrupted by nonsequential requests

 Sequential run length metrics describe the

uninterrupted streams of exactly sequential requests

 Modes are the most common values in a set (as

opposed to mean or median values)

 80th percentile metric modifier indicates how many

unique (“hot”) values constitute 80% of the total set

 N/A indicates that data was unavailable at the time

this paper was written

TABLE I

WORKLOAD STATISTICS FOR PRODUCTION AND BENCHMARK STORAGE SERVER TRACES

Trace Statistics
LM-

TFE

LM-

TBE

DAP-

DS

DAP-

PS

Exch-

5

Exch-

24

MSN-

CFS

MSN-

BEFS
WBS DTRS

RAD-

AS

RAD-

BE

TPC-

C

TPC-

E

Duration

(Hours) 24 24 24 24 5 24 6 6 24 24 18 18 0:05 0:10

IO Rate (typically
midnight to

midnight)

Avg IO/s

 3.956 517.4 17.7 12.6 133.4 628.2 207.3 1351 145.9 205.9 40.2 84.4 50255 25432

R 0.015 408.1 16.0 7.1 36.6 234.1 153 908 74.0 137.5 4.1 15.1 32337 23358

W 3.941 109.3 1.7 5.5 96.8 394.1 54.3 443 71.8 68.4 36.1 69.3 17918 2074

Total IOs

(Millions)

 0.342 44.77 1.53 1.09 11.54 54.16 4.48 29.35 12.63 17.16 1.99 4.19 15.08 15.26

R 0.001 35.31 1.39 0.61 3.17 20.18 3.30 19.73 6.41 11.46 0.21 0.75 9.70 14.01

W 0.341 9.46 0.15 0.48 8.38 33.98 1.17 9.62 6.22 5.70 1.78 3.44 5.38 1.24

Total GB

Transferred

 8.92 2344 42.63 80.3 159.3 696.9 41.4 303.2 330.6 409.9 16.1 113.7 122.6 122.0

R 0.01 1786 41.65 36.2 53.6 250.4 27.3 200.9 155.8 235.4 2.0 75.7 74.8 107.0

W 8.90 558 0.98 44.1 105.7 446.5 14.1 102.3 174.8 174.5 14.1 38.0 47.9 15.0

Avg Req

Size (KB)

 27.32 54.91 29.17 77.47 14.47 13.49 9.71 10.83 27.44 25.05 8.47 28.5 8.53 8.38

R 11.55 53.04 31.50 62.13 17.75 13.01 8.67 10.68 25.49 21.54 10.29 106.0 8.08 8.01

W 27.37 61.90 7.04 97.13 13.23 13.78 12.62 11.15 29.46 32.12 8.26 11.6 9.34 12.63

Req Size
Modes

(KB)

 4, 64 64 32 64 8, 4 8 4 8 4, 32 4, 64 4, 4.5 8, 120 8 8

R 4 64 32 64 8 8 4 8 4, 32 4, 64 4, 5 120 8 8

W 4, 64 64 4 4, 64 4, 8 4, 8 4 8 4, 32 64, 4 4, 4.5 8, 4 8 8

Avg Q

Length on
Initiation

 7.123 1.94 0.082 0.043 5.86 97.61 3.38 128.0 3.09 28.58 0.13 3.12 225.4 140.6

R 0.075 0.51 0.074 0.005 2.73 42.59 2.48 94.6 3.60 15.15 0.15 0.41 213.4 138.5

W 7.149 5.87 0.065 0.083 5.86 66.14 3.51 152.0 0.43 18.47 0.09 3.48 14.6 3.1

Avg

Response

Time (ms)

 11.32 1.96 3.42 0.77 1.79 3.17 12.09 15.04 3.21 10.12 0.95 6.01 4.38 5.35

R 2.93 1.73 3.76 0.84 5.31 6.20 15.62 17.11 6.11 4.64 6.99 5.09 6.47 5.77

W 11.36 2.85 0.18 0.68 0.45 1.37 2.14 10.78 0.22 21.13 0.26 6.22 0.61 0.52

Avg System

InterArriv
(ms)

 253 1.93 56.5 79.6 15.69 1.59 4.86 0.74 6.88 N/A 24.84 11.85 0.02 0.04

R 66757 2.45 62.4 141.5 51.37 4.27 6.58 1.10 13.55 7.32 240.8 66.26 0.03 0.04

W 254 9.15 594.1 181.8 21.66 2.54 18.53 2.26 13.96 14.72 27.70 14.42 0.06 0.49

Avg Disk

InterArriv

(ms)

 505 3.87 56.5 79.6 N/A 35.1 43.7 4.31 6.88 N/A 24.8 79.0 0.38 0.56

R 66757 4.90 62.4 141.5 N/A 43.8 59.2 5.40 13.55 109.9 240.8 437.5 0.55 0.56

W 507 18.30 594.1 181.8 N/A 54.5 166.8 13.16 13.96 N/A 27.7 96.1 0.98 7.34

% Seq IOs

Initiated

 32.62 70.43 0.77 61.65 N/A 16.12 8.30 4.35 7.79 21.80 47.78 58.19 2.10 1.55

R 13.99 66.47 0.51 97.41 N/A 4.76 7.81 1.93 13.09 20.13 3.63 11.77 0.001 0.034

W 32.70 95.25 3.35 16.52 N/A 23.21 10.66 9.69 3.87 32.86 55.82 70.72 6.08 18.75

Mean Seq

Run Length

(IOs)

 4.62 11.2 2.69 17.09 3.35 3.28 2.76 3.00 3.53 4.01 7.91 21.47 46.04 32.99

R 3.93 11.4 3.03 131.6 4.52 3.38 2.46 2.79 3.64 3.60 2.46 3.24 2.35 2.19

W 4.63 182.8 2.37 3.23 3.24 3.30 4.35 3.17 3.42 6.78 12.83 43.91 1235 84.06

Run Length

Modes
(IOs)

 2, 3, 5 2, 3, 8 2 2, 3, 4 2, 4, 3 2, 4 2 2 2 2 4, 2, 8 2 2, 3 2

R 2, 3, 4 2, 3, 4 2 2 2 2 2 2 2 2 2 2 2 2

W 2, 3, 5 2, 3, 8 2 2, 3, 4 2, 4, 3 2,4 2 2 2 2, 8 4, 2, 8 2 2, 3, 4 2

Mean Seq

Run Length

(KB)

 241.4 648.6 61.9 1056 54.7 53.6 87.5 68.4 172.2 377.4 41.6 409.3 1083 862

R 92.8 635.8 81.6 8294 186.5 133.9 60.5 78.9 334.9 253.8 74.1 628.2 55.6 19.5

W 241.7 11723 42.8 178 40.0 45.5 219.0 65.9 474.1 837.7 64.4 446.9 29312 2313

Run Length

Modes
(KB)

 8, 128 128 8 128, 8 8, 1 8 68, 8 16, 1 8, 128 256 15 240, 1 1024 16

R 8, 12 128 80, 12 80, 12 16, 24 16 68 16 8, 128 16 8, 128 240 16, 64 16

W 8, 128 256 8 128, 8 8, 1 8 8, 68 1, 120 8 1024 15 1, 4, 8 1024 120

Unique

Files

Accessed

 818 15097 3647 4338 40428 138K 958K 331 1.1M N/A 20586 3818 220 199

R 99 11938 3450 3962 34275 124K 654K 165 726K N/A 20190 2694 178 169

W 733 4450 252 617 7020 16456 438K 270 793K N/A 16949 2661 45 37

Hot Files
(80% of

total reqs)

 16 219 1 191 87 72 180K 14 83463 N/A 18 2 1 1

R 19 184 1 156 38 34 104K 9 62914 N/A 5311 3 1 1

W 15 164 8 38 91 89 203K 21 64502 N/A 9 2 1 1

V. TRACE ANALYSIS

This section provides an analysis of selected workload

characteristics for a subset of the described traces in order to

give a flavor of some useful ways to visualize the data and

identify interesting storage workload characteristics. Due to

space limitations, only the most interesting figures for each

workload are presented in this paper.

A. Build and release servers (WBS and DTRS)

Fig. 1 shows the sorted distribution of IO request sizes

observed on the WBS while building Windows Server. Due

to the large number of small files accessed, the most

common request size is 4 KB, the default cluster size of the

NTFS file system. Over 3.5 million requests (29% of the

total) are for 4 KB, split evenly between reads and writes.

Similarly, the DTRS has 42% of its requests accessing 4 KB

(not shown).

Spatial locality is a good indicator of how much disk

actuator movement is required between servicing individual

requests. It can be represented as the offset of the first block

of a request relative to the last block of the most previous

request to the same disk. Purely sequential requests have an

offset of zero in the context of this analysis.

Fig. 2 shows the short-distance spatial locality distribution

while building Windows. 4% of write requests and 13% of

read requests (value not graphed) are exactly sequential.

Short distance “jumps” between temporally adjacent

requests occur most often for 4 KB multiples up to 40 KB,

both forward and backward. Small backward jumps have

unfortunate performance effects on rotating media, but small

forward jumps can take advantage of hardware read

prefetching and write buffering. In comparison, the DTRS

trace contains 20% read and 32% write sequentiality.

Fig. 1. Read and write request size distribution in WBS trace.

Fig. 2. Short distance spatial locality of adjacent requests in WBS trace.

B. Display Ads Platform servers (DAP-DS, DAP-PS)

Fig. 3 shows the distribution of the interarrival times in

100 microsecond buckets for the DAP-PS. While the vast

majority of requests arrive within one second of the

immediately previous request, the figure clearly shows

periodic interarrival modes at multiples of one second (along

the x-axis). For example, the overlaid CDF function shows

that 5% of all requests arrive exactly one second after the

most previous request. However, the log scale on the y-axis

indicates that the magnitude of these interarrival time modes

tails off sharply. The regularity of this behavior suggests a

background service or timer that wakes up once per second

during idle periods, or after a certain number of requests are

issued, and issues IOs depending on system state. By

identifying the set of files accessed after these one-second

delays, along with the specific processes issuing the IOs,

those familiar with the workload can isolate the source of the

behavior. If the server environment is power-sensitive, such

periodic activity may drag the system out of low power

states and thus be inadvisable.

Fig. 4 shows a similar distribution of request interarrival

times for the DAP-DS. The interarrival histograms for these

two workloads are quite distinct. For example, while there

are many histogram buckets for interarrival times less than

250 milliseconds that are essentially empty for the DAP-PS

trace, every corresponding bucket for the DAP-DS trace has

at least 100 data points.

Fig. 5 shows the distribution of the “hot file” read

accesses for DAP-PS. The y-axis shows the percentage of

read requests for the sorted list of files. 6% of all files

accessed during the trace (roughly 240 files) receive more

than 97% of the total read accesses, significantly exceeding

the Pareto principle (also known as the “80/20” rule). These

files do not appear on the list of hot files for disk writes

since they are read-mostly or read-only files.

Fig. 3. Request interarrival times (100 second buckets) for DAP-PS trace.

Fig. 4. Request interarrival times (100 second buckets) for DAP-DS trace.

Fig. 5. Read access distribution for hottest 241 files in DAP-PS.

C. Exchange server (Exch-5, Exch -24)

Fig. 6 shows the distributions of read IO accesses across

all Exch-24 disk arrays. This particular Exchange server has

excess storage resources, so the disks have no problem

providing the requisite throughput and responsiveness

throughout the day. However, the graph shows one massive

spike of read activity across the six data disk arrays at

approximately 3:30 AM. Digging deeper into the event

traces clearly indicates which processes and files are active

during this 15-minute window. The cause of the spike is the

Exchange replication task that occurs early each morning.

Fig. 6. IO rates in 15-minute increments for Exch-24 disk arrays.

Fig. 7 shows the distribution of hot files for Exch-5. The

y-axis shows the percentage of total accesses for the sorted

list of files. Enumeration of the “hottest” files in the

workload can reveal interesting interactions between the

application and the system. In this case, more than 20% of

all IOs are NTFS metadata updates (i.e., writes to on-disk

NTFS metadata structures). While the top 40+ hottest files

receiving read requests are all Exchange data files, the

hottest write files constitute not only writes to the Exchange

database log files but also NTFS log writes. They are visible

on the figure as the set of files receiving about 3% of the

total writes each. These metadata writes skew the overall

read:write ratio from the 1:1 value expected by the Microsoft

Exchange developers to a 1:2 value in favor of write

accesses. This discovery led to a more detailed investigation

of potential causes for this behavior and possible “best

practices” solutions. One tradeoff would be to set the system

wide DisableLastAccess NTFS registry key if applications

on the system do not need per-file last access times.

Fig. 7. Disk access distribution for hottest 125 files in Exch-5.

Fig. 8 shows the distribution of idle period durations (i.e.,

when there are zero disk requests outstanding) for Exch-5.

When designing intelligent storage hardware components,

there is often the need to perform background activities (e.g.,

bit scrubbing, defragmentation, page cleaning). As the best

time to do this is during idle periods, determining the

frequency and length of idle periods experienced throughout

the phases of a given workload trace provides invaluable

guidelines on what types of background activities are

feasible and how finely the work has to be sliced in order to

fit into the typical intervals. This particular graph shows that

45% of the idle periods in the trace last less than

15 milliseconds. The tail on this distribution extends out

beyond a millisecond of idle time; there are some intervals

where an Exchange disk array is idle for more than a second.

Fig. 8. Idle duration distribution for Exch-5 disk arrays.

Analysis of the traces indicates an excess of IO requests

split across array stripe unit boundaries (i.e, across multiple

physical disks). Microsoft Exchange Server best practices

include forcibly aligning disk partition boundaries to prevent

this behavior. While Vista and Windows Server 2008

automatically align partitions to 1 MB boundaries on typical

disks, the traced server was running Windows Server 2003

and the primary mailbox partition was in fact misaligned.

This led to the discovery of misaligned mailbox partitions on

other corporate Exchange servers.

Misalignment of data within a file system can also

degrade performance. NTFS defaults to 4 KB clusters

(allocation units) to conserve disk space, but this can result

in misalignment for larger data objects such as the 8 KB data

items found in an Exchange database. Assuming 4 KB

clusters and a hardware array stripe unit size of 256 KB

(a reasonable choice for this workload), one might expect up

to a 3% performance hit due to the extra disk accesses

required for 8 KB requests that straddle stripe unit

boundaries. The instrumented system appears to have 4 KB

NTFS clusters, resulting in 8 KB requests to the database

files (the most common size) being occasionally misaligned.

Reformatting the partition with 8KB or larger clusters could

solve this.

Feeding back this type of information provides real value-

add to system administrators willing to take and share traces,

enabling them to make informed decisions on optimizing

their systems.

D. Radius back-end SQL server (RAD-BE)

Fig. 9 shows the distribution of disk read accesses (y-axis)

across the LBN ranges (x-axis) of individual disks (z-axis).

While this graph gives a nice overview of how the LBN

space is utilized, it becomes far more useful if some basic

domain knowledge is applied to filter the trace for specific

workload phases or sub-workloads or file sets. Knowing

how each portion of the disk space is used enables

sophisticated data placement or reorganization to improve

performance characteristics for the most important

components of the storage workload. For example, placing

hot files and directories on partitions near the “outer” tracks

of a modern disk drive can improve sequential throughput by

as much as 2X depending on hardware bottlenecks in the

storage paths and specific disk drive characteristics. Another

example would be to take advantage of temporal locality

across data sets by placing them on a disk in close proximity

(based on LBN), thereby potentially reducing seek delays.

Fig. 9. Read access distribution across 500 MB buckets for RAD-BE.

E. MSN storage file server (MSN-BEFS)

Fig. 10 shows the distribution of accesses to the hottest

files for the MSN storage file server. The top 15 files receive

both read and write traffic, in contrast to most of the other

traces where hot files are read-dominated or write-

dominated. This information can be used to configure

caches appropriately. The top 10% of MSN-BEFS files

receive more than 99% of the total disk accesses.

Fig. 10. Disk access distribution for hottest 35 files in MSN-BEFS.

F. Database workloads: TPC-C and TPC-E

Compared to real world traces, the TPC traces are much

more steady state and have higher interarrival rates. Fig. 11

and Fig. 12 show the system-wide (not per-disk) request

interarrival time distributions in 100-microsecond buckets

for TPC-C and TPC-E, respectively. Request counts are

plotted along the y-axis on a log scale. The majority of

TPC-C requests arrive within one millisecond of the

immediately previous request. However, there is a tail of

requests arriving up to 10 milliseconds after the previous

request. In contrast, almost all IO requests for TPC-E arrive

within one millisecond of the immediately previous request.

Fig. 11. Request interarrival times (100 second buckets) for TPC-C.

Fig. 12. Request interarrival times (100 second buckets) for TPC-E.

VI. SELF-SIMILARITY IN TIME AND SPACE

Self-similarity can help characterize and model the

burstiness of storage workloads.

A. Theory of self-similarity

This section gives a brief introduction of the definitions of

self-similarity and its estimation methodologies [5] [6] [7].

Informally, self-similarity means that a stochastic process

looks “roughly” the same on any scale. Consider a stochastic

process X = {X1, X2, X3, …} with mean µ and variance σ
2
. Its

autocorrelation function r(k) for (k ≥ 1) is defined as

2

)])([(
)(



 
 ktt XXE

kr .

Let X
(m)

= (Xk
(m)

, k = 1, 2, 3, …) denote a process obtained by

averaging X over non-overlapping blocks of size m:

Xk
(m)

= (X(k-1)m+…+Xkm-1)/m, where m = 1, 2, ...

Then the process X is called second-order self-similar with

self-similarity Hurst parameter H if, for all k large enough,

,,||~)()()1(2)(  maskCkrkr H

r

m

where r
(m)

(k) is the autocorrelation function of X
(m)

, Cr is a

positive constant, and 0.5 < H < 1.

This paper uses variance-time plot to get the Hurst

parameter of the disk IO processes. The method of variance-

time plot is based on the fact that the variances of the sample

mean are decaying more slowly than the reciprocal of the

sample size:

var(X
(m)

) ~ a1m
2H-2

,

where a1 is a finite positive constant. Therefore, the log-log

plot of the variance of X
(m)

 over m has a slope approximated

as (2H-2).

B. Temporal self-similarity

The self-similarity of the arrival processes of IO requests

are examined for four of the traces described in Section III:

DAP-DS (Display Ads Platform data server), DAP-PS

(Display Ads Platform payload server), WBS (Windows

build server), and MSN-BEFS (MSN back-end file server).

Fig. 13 illustrates the variance-time plot for the overall

arrival process of each trace. Higher H values are indicated

for workloads with data points that maintain fairly constant

y-values. All the arrival processes display strong self-

similarity except that of DAP-PS.

Fig. 13. Variance-time plot for the total arrival rate of four IO traces.

TABLE II
HURST PARAMETER OF IO REQUEST ARRIVAL RATES ESTIMATED BY

VARIANCE-TIME METHOD

Trace
H

R W Total

DAP-DS 0.966 0.832 0.938

DAP-PS 0.461 0.705 0.548

WBS 0.945 0.939 0.958

MSN-BEFS 0.878 0.744 0.872

Disk0 N/A 0.686 0.676
Disk1 0.844 0.883 0.893

Disk4 0.875 0.688 0.865

Disk5 0.878 0.688 0.869

Table II lists the estimated H values for different arrival

processes. In addition to the total arrivals to each system, the

Hurst parameters of arrival processes for read and write

requests to each disk are also estimated. Note that due to the

small number of requests to Disk 0 in the MSN-BEFS trace,

its H value is not available. Although DAP-PS does not

show self-similarity in the total arrival process, its write

arrival process has an H value of over 0.7. MSN-BEFS is

aggregated by the requests for mainly four disks. Each disk

has similar H values with the total arrival process except

Disk 0, which has fewer requests than the other disks.

Alternatively, the total arrival process can be viewed as an

aggregation of the arrival processes of each file. Fig. 14

displays the estimated H of the arrival processes to the top

40 “hottest” files in MSN-BEFS, which service close to

100% of the total request load (as shown in Fig. 10). Most of

these processes give H values of approximately 0.7. The

self-similarity does not have a strong relationship with the

relative heat of the files.

Fig. 14. Hurst parameters of arrival rates for hottest 40 files in MSN-BEFS.

C. Spatial self-similarity

Similar analysis is given for the spatial behavior of the

disk access locations. Let Yt denote the number of requests

with starting location on block bucket t for t ≥ 0. Then H of

Yt tells the self-similarity degree of the request starting

locations. Table III summarizes the estimated H values for

the four traces using the variance-time plot method. Most of

the traces display very strong self-similarity with H larger

than 0.9. In general, the write processes have lower H values

than the read processes.

DAP-PS still has a low H, which indicates weak self-

similarity for the total request set. However, its read request

pattern gives an H value as high as 0.963 for the starting

locations, while its write request pattern does not show self-

similarity. This is opposite to the temporal behavior of DAP-

PS reads and writes as shown in Table II. WBS has a similar

request arrival process H value to that of DAP-DS, but a

significantly lower H value when computing spatial self-

similarity.

TABLE III

HURST PARAMETER OF LBN ESTIMATED BY VARIANCE-TIME METHOD

These types of self-similarity analyses improve the accuracy

of analytic modeling for different applications. They

represent a promising avenue for future investigation.

Trace
H

R W Total

DAP-DS 0.983 0.616 0.940

DAP-PS 0.963 0.564 0.581

WBS 0.827 0.700 0.792

MSN-BEFS
Disk0 N/A 0.938 0.940

Disk1 0.967 0.931 0.934

Disk4 0.931 0.847 0.919
Disk5 0.936 0.857 0.925

VII. SUMMARY AND FUTURE WORK

The availability of comprehensive long-term traces of

storage activity from a variety of production servers should

enable more accurate modeling, simulation, research,

development, and implementation of storage subsystem

software, firmware, and hardware components. Virtually

anyone having access with appropriate privileges to a

production server running Windows Server 2008 can use its

highly tunable in-box tracing capability to capture such

traces. Ideally, a wide range of companies and individuals

will provide traces to the broader storage community and

publish associated analyses.

A set of twelve initial production server traces spanning a

variety of workloads are characterized in this report. A

lengthy set of extracted statistics as well as some sample

visualizations are provided as a first step in the analysis of

these traces. Future publications will undoubtedly expand

on this analysis and provide deeper insights into the

particulars of specific workloads. As more workloads are

added to the list of publicly available traces, they will be

analyzed using the ever-growing set of extraction scripts and

visualization techniques. As tracing technology continues to

improve, it may be possible to collect correlated end-to-end

traces across multiple systems and networks.

In the near future, the authors hope to develop a Windows

host model to enable closed-loop event-based simulation by

emulating the Windows scheduler. ETW process, thread,

context switch, and other scheduler events could be fed into

the host piece of a joint software/hardware storage model to

allow a workload to be realistically scaled as the underlying

hardware model’s performance characteristics are changed.

ACKNOWLEDGMENT

The authors wish to thank Seagate for providing the initial

set of disks for storing the traces.

REFERENCES

[1] I. Ahmad, “Easy and Efficient Disk I/O Workload Characterization in

VMware ESX Server,” Proceedings of the 2007 IEEE International

Symposium on Workload Characterization (IISWC), Sept. 2007, pp.
149-158.

[2] A. Aranya, C. Wright, and E. Zadok, “Tracefs: A File System to

Trace Them All,” Proceedings of the 3rd USENIX Conference on File
and Storage Technologies (FAST), May 2004, pp. 129-143.

[3] Database Test Suite, Database Test 2 (DBT-2). Available:
http://osdldbt.sourceforge.net/#dbt2.

[4] G. Ganger, “Generating Representative Synthetic Workloads,”

Proceedings of the Computer Measurement Group Conference
(CMG), Dec. 1995, pp. 1263-1269.

[5] M. E. Gomez, and V. Santonja, “Analysis of Self-Similarity in I/O

Workload Using Structural Modeling,” Proceedings of the 7th
International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS), Oct. 1999,

pp. 234-242.
[6] M. E. Gomez, and V. Santonja, “A New Approach in the Analysis and

Modeling of Disk Access Patterns,” Proceedings of the 2000 IEEE

International Symposium on Performance Analysis of Systems and
Software (ISPASS), Apr. 2000, pp. 172-177.

[7] M. E. Gomez, and V. Santonja, “A New Approach in the Modeling

and Generation of Synthetic Disk Workload,” Proceedings of the 8th
International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS), Aug. 2000,

pp. 199-206.
[8] B. Hong, and T. M. Madhyastha, “The Relevance of Long-Range

Dependence in Disk Traffic and Implications for Trace Synthesis,”

22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST), Apr. 2005, pp. 316-326.

[9] “io Provider,” Solaris Dynamic Tracing Guide, Chapter 27.

Available: http://docs.sun.com/app/docs/doc/817-6223/chp-
io?a=view.

[10] IOTTA Repository, Storage Networking Industry Association,

http://iotta.snia.org/.
[11] K. Keeton, G. Alvarez, E. Riedel, and M. Uysal, “Characterizing I/O-

Intensive Workload Sequentiality on Modern Disk Arrays,”

Proceedings of the 4th Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), Jan. 2001.

[12] K. Keeton, A. Veitch, D. Obal, and J. Wilkes, “I/O Characterization of

Commercial Workloads,” Proceedings of the 3rd Workshop on
Computer Architecture Evaluation using Commercial Workloads

(CAECW), Jan. 2000.

[13] Z. Kurmas, K. Keeton, and R. Becker-Szendy, “I/O Workload
Characterization,” Proceedings of the 4th Workshop on Computer

Architecture Evaluation using Commercial Workloads (CAECW), Jan.

2001.
[14] Z. Kurmas, K. Keeton, and K. Mackenzie, “Synthesizing

Representative I/O Workloads Using Iterative Distillation,”

Proceedings of the 11th International Symposium on Modeling,
Analysis, and Simulation of Computer Telecommunications Systems

(MASCOTS), Oct. 2003, pp 6-15.
[15] J. Lorch and A. J. Smith, “Building VTrace, a Tracer for Windows

NT,” MSDN Magazine, Sept.-Oct. 2000.

[16] R. McDougal, “FileBench: A Prototype Model Based Workload for
File Systems, Work in Progress.” Available:

http://www.solarisinternals.com/si/tools/filebench/filebench_nasconf.

pdf.
[17] O. Ozmen, K. Salem, M. Uysal, and M. Attar, “Storage Workload

Estimation for Database Management Systems,” Proceedings of 2007

ACM SIGMOD International Conference on Management of Data,
June 2007, pp 377-388.

[18] J. S. Pendry, N. Williams, and E. Zadok. Am-utils User Manual, 6.1b3

edition, July 2003. Available: http://www.am-utils.org.
[19] D. Roselli, J. Lorch, and T. Anderson, “A Comparison of File System

Workloads,” Proceedings of the 2000 USENIX Annual Technical

Conference, June 2000, pp. 41-54.
[20] C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,”

Proceedings of 1990 SIGMETRICS, Jan. 1990, pp. 405-420.

[21] “TPC Benchmark C, Standard Specification,” June 2007. Available:
http://tpc.org/tpcc/spec/tpcc_current.pdf.

[22] “TPC Benchmark D (Decision Support), Standard Specification,” Feb.

1998. Available: http://tpc.org/tpcd/spec/tpcd_current.pdf.
[23] “TPC Benchmark E, Standard Specification,” Feb. 2008. Available:

http://tpc.org/tpce/spec/TPCE-v1.5.0.pdf.

[24] “TPC Benchmark H (Decision Support), Standard Specification,”
Feb. 2008. Available: http://tpc.org/tpch/spec/tpch_262.pdf.

[25] E. Tufte, “Sparklines: Theory and Practice.” Available:

http://www.edwardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=0001OR.

[26] A. Veitch and K. Keeton, “The Rubicon Workload Characterization

Tool,” Tech. Rep. HPL-SSP-2003-13, HP Laboratories, Palo Alto,
CA, Apr. 2001.

[27] W. Vogels, “File System Usage in Windows NT 4.0,” Proceedings of

the 17th Symposium on Operating System Principles (SOSP), Dec.
1999, pp. 93-109.

[28] “vxtrace,” HP-UX Reference. Available:

http://docs.hp.com/en/B3921-90010/vxtrace.1M.html.
[29] M. Wang, A. Ailamaki, and C. Faloutsos, “Capturing the Spatio-

Temporal Behavior of Real Traffic Data,” IFIP Intl. Symp. on

Computer Performance Modeling, Measurement, and Evaluation
(Performance), Sep. 2002, pp 147-163.

[30] J. Wilkes, “Traveling to Rome: QoS Specifications for Automated

Storage System Management,” Proceedings of the International
Workshop on Quality of Service (IWQoS), June 2001, pp. 75-91.

[31] T. Wong and J. Wilkes, “My Cache or Yours? Making Storage More
Exclusive,” Proceedings of the USENIX Annual Technical Conference

(USENIX), June 2002, pp. 161-175.

http://osdldbt.sourceforge.net/#dbt2
http://docs.sun.com/app/docs/doc/817-6223/chp-io?a=view
http://docs.sun.com/app/docs/doc/817-6223/chp-io?a=view
http://iotta.snia.org/
http://www.solarisinternals.com/si/tools/filebench/filebench_nasconf.pdf
http://www.solarisinternals.com/si/tools/filebench/filebench_nasconf.pdf
http://www.am-utils.org/
http://tpc.org/tpcc/spec/tpcc_current.pdf
http://tpc.org/tpcd/spec/tpcd_current.pdf
http://tpc.org/tpce/spec/TPCE-v1.5.0.pdf
http://tpc.org/tpch/spec/tpch_262.pdf
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR
http://docs.hp.com/en/B3921-90010/vxtrace.1M.html

