
 

 

 

 

 

The scarcity of publicly available storage workload traces of 

production servers impairs characterization, modeling 

research, and development efforts across the storage industry.  

Twelve sets of storage traces from a diverse set of Microsoft 

Corporation production servers were captured using ETW 

(Event Tracing for Windows) instrumentation.  Windows 

Server 2008 dramatically increases the breadth and depth of 

ETW instrumentation, and new trace capture and visualization 

tools are available in the Windows Performance Tools kit.   

Additional analytical tools were developed to analyze and 

visualize traces captured from Exchange, software build and 

release, Live Maps, MSN storage, security authentication, and 

display advertisement platform servers.  This paper contains a 

first set of characterizations for these traces, including simple 

block-level statistics, multi-parameter distributions, rankings of 

file access frequencies, and more complex analyses such as 

temporal and spatial self-similarity measurements.  Trace data 

visualizations enable the examination of workload parameters, 

subcomponents, phases, and deviations from predicted 

behavior. 

I. INTRODUCTION 

BTAINING comprehensive traces of storage activity on a 

wide range of production servers is, to say the very 

least, a challenging undertaking. Making the traces publicly 

available increases the difficulty by an order of magnitude.   

The scarcity of such traces over the last 15+ years attests to 

the obstacles that must be overcome to achieve this goal. 

Starting in late 2007, Microsoft began tracing the storage 

workloads of a variety of its corporate production servers 

specifically to support internal and external researchers and 

developers of storage hardware and software. Windows 

Server can selectively enable extensive instrumentation via 

Windows command-line utilities or WMI (Windows 

Management Infrastructure) calls.  

Initial samples of production server storage traces are 

being publicly distributed via the online trace repository 

provided by SNIA (Storage Networking Industry 

Association) [10]. While the initial production traces 

analyzed in this report are 5-24 hours in duration and include 

primarily file and disk I/O events, the end goal is to make 

longer and more comprehensive traces publicly available as 

the process for automated capture, verification, analysis, 

confidential string obfuscation, and distribution of such 

traces stabilizes. 

A variety of statistical parameters are extracted and 

tabulated for twelve unique trace sets.  These basic 
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parameters are useful for identifying a few general workload 

behaviors and for selecting specific traces for deeper 

analysis. Several visualizations of individual and 

combinations of characteristics are presented.  Complex 

interrelationships such as self-similarity are explored as 

well. 

Storage traces provide insights on design and 

implementation tradeoffs of file systems, file and block 

caches, storage drivers, storage controller firmware, and the 

various hardware components of a modern server storage 

subsystem.  For example, the use of nonvolatile memory 

(NVM) in the server storage stack is receiving significant 

attention now that enterprise-quality Flash memory 

components have dropped in price, increased in per-unit 

capacity, improved in reliability, and addressed the random 

write performance penalty traditionally associated with the 

technology. Comprehensive storage traces of production 

servers will be crucial in the determination of what forms 

and configurations of NVM are appropriate for different 

workloads. Even application developers can take advantage 

of storage traces of specific workload scenarios in order to 

improve the manner in which I/Os are issued.  

The remaining sections in this paper are as follows: 

Section II provides background and related work. Section III 

describes the new traces analyzed in this report. Section IV 

lists a wide variety of parameters and metrics associated 

with a server storage workload.  It also includes a tabular 

overview of the new traces’ basic characteristics.  Section V 

provides a deeper look into some of the behavior captured in 

the traces.  Section VI extends this analysis by 

demonstrating how some of these storage workloads exhibit 

self-similarity both in time and in space.  Section VII 

provides a summary and some directions for future work. 

II. BACKGROUND AND RELATED WORK 

A. Traces vs. Synthetic Workloads 

Typical uses of server storage traces can be divided into 

three broad areas:  analysis of the characteristics and 

behaviors of the specific systems or workloads traced; input 

for trace-driven simulation or modeling; and extraction of 

parameters and heuristics to configure synthetic workload 

models.  In the latter two usages, there are purposes beyond 

the context of the traced environment. 

While trace-driven simulation of storage subsystems has a 

number of limitations, the design and use of synthetic 

workload models is still largely dependent on the availability 

of traces from which characteristics can be selected, 
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extracted, and subsequently generalized.  Unfortunately, 

storage traces are often difficult to characterize due to the 

complexity of interactions between multiple request streams 

and the uncertainty of whether or not they are truly 

representative of environments similar to the ones traced.  It 

is also difficult to prove that even the most detailed synthetic 

models capture all of the important properties of a given set 

of traces. Nevertheless, there are a number of advantages of 

utilizing synthetic models for analysis instead of the server 

storage workload traces themselves:   

 Synthetic models have the flexibility to observe 

behaviors with alternative parameters or heuristics 

 Large sets of comprehensive traces are difficult to 

obtain due to security and performance impact 

concerns 

 Even when compressed, lengthy storage traces require 

significant on-line or archival storage 

So, while a trace is an accurate representation of a specific 

set of activities on a specific server and thus can be used to 

accurately drive trace-driven models, the ideal purpose is the 

transformation of a set of representative traces into a set of 

characteristics that enable modeling and simulation across a 

wider spectrum of system environments. 

B. Capturing and sharing server storage workload traces 

The ideal storage workload trace methodology includes all 

of the features given below. 

 Administrative access to production servers 

 Minimum overhead imposed during trace capture and 

zero overhead when tracing is disabled 

 Coverage of all phases of activity and all data sets 

across multiple equivalent platforms for months/years 

 Sufficient trace event types captured to supply all 

future analyses (impossible, so capture as much as 

feasible without adversely impacting other features) 

 Correlated file block and disk block events 

 Full disclosure of software, hardware, and firmware 

configuration information during the trace period 

 Self-describing portable trace event formats 

 High compression factor for trace files 

 Selective obfuscation of trace event elements (e.g., 

file or process names) 

 Selective trace event element decryption to maintain a 

single trace format [2] 

Since this combination of features cannot be simultaneously 

realized, the inherent tradeoffs must be carefully evaluated. 

C. Characterizing server storage workload traces 

As is demonstrated in Section IV, a long list of 

characteristics can be extracted from a storage workload 

trace.  The interaction between different basic characteristics 

must also be identified and prioritized by overall impact [4] 

[12] [13] [14] [19] [27].  If the trace characterization is 

driving an open model, the observed response times of the 

traced system may or may not be utilized.  Similarly, if the 

model is closed, then arrival times may or may not be 

utilized in favor of maintaining a certain level of I/O 

concurrency [30]. 

The possible existence of self-similarity in real-world disk 

traffic was first proposed in [4]. Using two disk-block IO 

traces, self-similarity analyses in disk arrival patterns and 

disk access patterns were provided in [5]-[7]. A combination 

of the ON/OFF source model and Cox’s model described 

self-similar behavior in these two dimensions. Binomial 

multifractals have been used to generate synthesized IO 

workloads that display self-similarity [8]. Entropy plots can 

quantify the spatial and temporal correlation of disk 

requests, and an efficient entropy-based model was proposed 

to capture all the characteristics of real spatio-temporal 

traffic [29]. All these related works demonstrate the 

existence of self-similarity in storage IO traces, which must 

therefore be considered in analytic modeling to capture 

accurate storage performance. 

D. Storage workload tracing facilities 

Event Tracing for Windows (ETW) has been the core 

tracing component built in to Windows operating systems 

since Windows 2000. ETW provides a high performance, 

low overhead, and highly scalable tracing framework. It uses 

efficient buffering and non-blocking logging mechanisms 

with per-CPU buffers written to stable storage by a separate 

thread. Windows Server 2003 and 2008 releases allow 

tracing to be enabled and disabled dynamically without 

requiring system reboots or application restarts. Many 

Windows components, including the kernel, produce 

numerous events describing their behavior. Typical events 

are discrete time-stamped trace points, but sampling and 

statistical data captures are also possible. Storage related 

instrumentation includes, but is not limited to:  initiation and 

completion disk events for reads, writes, and flushes; and 

file events for creates, deletes, reads, writes, and attribute 

queries and updates. 

One predecessor of ETW is VTrace, which provides 

kernel event instrumentation through patching and hooking 

Windows NT and Windows 2000 by undocumented and 

unsupported means [15].  Other operating systems also 

provide embedded support for storage workload tracing, 

such as the “io” provider in Solaris’ DTrace [9], the Veritas 

vxtrace utility in HP-UX [28], the Tracefs file system filter 

for Linux [2], and the disk I/O workload characterization 

tool in VMware [1]. 

E. Published server storage block-level traces 

Various server storage block-level traces gathered and 

published in the last 15 years are listed below.   

 1992: 4 months of disk block traces from the Snake 

file server at U. C. Berkeley serving nine clients 

without local storage [20] 

 1992: 2 months of disk block traces from the Cello 

shared compute/mail server used by a HP Labs 

research team [20] 

 1996: 3 months of disk block traces from the same 

Cello shared compute/mail server 



 

 

 

 

 1999: 1 year of disk block traces from the same Cello 

shared compute/mail server [31] 

 2000: 1 hour of disk block traces from an OpenMail 

mail server for 1400 users at HP Labs [12] 

 2000:  1 month of file block traces from a web server 

(WEB) for an online library at U. C. Berkeley [19] 

Note that this list does not include storage traces of scientific 

workloads or traces without block-level events, both of 

which are beyond the scope of this paper. 

Storage traces of well-understood benchmarks are useful 

to verify tracing, postprocessing, modeling, and simulation 

infrastructures.  Since benchmarks are predefined models of 

steady-state workload behavior, extracting workload 

characteristics from traces of benchmarks may be easier than 

extraction of production workload characteristics, albeit of 

less value.  Some benchmarks used for server storage 

analysis are given below. 

 TPC-C [14] [21] [29] 

 TPC-D [11] [12] [22] 

 TPC-H [14] [17] [24] 

 FileBench [1] [16] 

 DBT-2 [1] [3] 

 Postmark [2] 

 AM-Utils [2] [18] 

Conclusions about real-world behavior drawn from analyses 

of benchmark traces are only as accurate as the benchmarks’ 

accuracy in representing real-world environments. 

III. SERVER STORAGE WORKLOAD TRACES 

This section describes twelve of the initial production 

server traces and two database benchmark traces.  The traces 

referenced in this report consist of ETW events enabled in 

the Windows kernel. A post-processing script library was 

developed to extract the reported workload characteristics 

and metrics. 

The Windows Performance Tools kit (WPT) is an 

extensible performance analysis toolset that provides high-

level control and decoding of ETW events. It includes a 

comprehensive visualization tool for detailed analyses of a 

wide range of system activities. This tool provides powerful 

interactive summary tables and graphs with dynamic 

grouping, sorting, and aggregation capabilities. 

The traces analyzed in this paper are broken into intervals 

to reduce the size of individual traces and make analysis and 

visualization easier. The duration of the interval is adjusted 

based on the storage activity of the workload to keep the size 

of the individual traces manageable. 

A. Live Maps front-end and back-end servers (LM) 

Virtual Earth is a feature of Live Maps that displays 

satellite images and photographs of locations. The tile front-

end server (TFE) takes a user request for a location and 

passes it to the tile back-end server (TBE). The TBE hosts a 

portion of the map imagery. It accesses the image tiles from 

a disk and sends them to the TFE, which then mashes up the 

image by adding routes, markers and other relevant 

information and sends it back to the user. The traces from 

the TFE and TBE cover a 24-hour period and are broken into 

1-hour intervals. 

B. Display Ads Platform data and payload servers (DAP) 

The purpose of the data server (DS) is to be a caching tier 

between the front-end server and the payload server (PS). A 

front-end server makes an advertisement request with a user 

id to the DS. The DS looks up the user id in the cache, 

appends any information available for that user to the 

request, and passes the request to the PS. The PS is 

responsible for ad selection.  The traces from the DS and PS 

cover a 24-hour period and are broken into 30-minute 

intervals. 

C. Exchange server (Exch) 

The Microsoft Exchange 2007 SP1 server is a mail server 

for 5000 corporate users. It is a 4-socket, dual-core system 

with 4 GB of memory. The storage consists of two 146 GB 

SAS drives in a RAID-1 configuration, six data arrays of 

fourteen 146 GB SAS drives, and two log arrays of eight 

146 GB SAS drives configured as RAID-10. One trace 

covers a 5-hour peak load period on a weekday afternoon. 

Another trace covers a 24-hour weekday period. The traces 

are broken into 15-minute intervals. 

D. MSN storage metadata and file servers (MSN) 

The CFS server stores metadata information and blobs 

correlating users to files stored on the back-end file server 

(BEFS). The BEFS provides the files requested by CFS. The 

servers are used by several Live data services. The traces 

from the CFS and BEFS cover a 6-hour period and are 

broken into 10-minute intervals. 

E. Windows build server (WBS) 

The WBS produces a complete build each day for the 

32-bit version of the Windows Server operating system. It is 

a 2-socket quad-core system with 8 GB of memory. The 

storage consists of eight 146 GB disks configured as 

RAID-0. To capture the complete build process as well as 

any disk activity during idle periods, the trace covers a 

24-hour period and is broken into 15-minute intervals. 

F. Developer tools release server (DTRS) 

The DTRS is a file server accessed by more than 

3000 users to download various daily builds of Microsoft 

Visual Studio (copied from dedicated build servers).  It is a 

2-socket single-core system with 2 GB of memory. The 

storage consists of a single Vdisk of 40 GB configured as 

RAID-10 storage. The Vdisk is part of a 219-disk SAN. The 

traces from the DTRS cover a 24-hour period and are broken 

into 1-hour intervals. 

G. RADIUS authentication and back-end servers (RAD) 

The RADIUS authentication server (AS) is responsible for 

worldwide corporate remote access and wireless 

authentication. It runs the IPSec NAP scenario. Data comes 

in via SQL replication on the back-end SQL server (BE). 



 

 

 

 

The traces from the AS and BE cover an 18-hour period and 

are broken into 1-hour intervals. 

H. Database benchmarks: TPC-C and TPC-E 

TPC-C is an online transaction processing (OLTP) 

benchmark simulating an order-entry environment [21]. It is 

a mix of five concurrent transactions of different 

complexities. TPC-E is the successor of the TPC-C 

benchmark and simulates the workload of a brokerage firm 

[23]. TPC-E transactions are more complex than those of 

TPC-C, and they more closely resemble modern OLTP 

transactions. TPC-E has lower storage throughput 

requirements than TPC-C. The TPC-C trace covers 

5 minutes of a steady state, fully scaled workload running on 

a 4-socket, dual-core system with 64 GB of memory. The 

storage consists of 14 RAID-0 disk arrays of 28 disks each. 

The TPC-E trace covers 10 minutes of a steady state, fully 

scaled workload running on a 4-socket quad-core system 

with 128 GB of memory. The storage consists of 12 RAID-0 

disk arrays of 28 disks each. 

IV. STORAGE WORKLOAD METRICS AND PARAMETERS 

For the majority of storage metrics and parameters, 

computing the means and variances is insufficient to 

characterize a trace accurately.  Histograms typically 

provide a good representation as long as they are sufficiently 

fine-grained.  Analysis of specific data points may reveal 

standardized distributions (e.g., normal, gamma, and 

exponential) that provide a good match for standard storage 

workload parameters such as: read/write ratio, request size 

and alignment, interarrival rate, response time, concurrency 

(e.g., queue depth), disk number, and file, partition, or disk 

offset (Logical Block Number).  Previous traces indicate 

heavy-tailed distributions for a range of spatial and temporal 

parameters [6] [7]. 

Spatial locality and sequentiality refer to the “distance” 

between blocks referenced in a specific window of time or in 

a specific window of requests.  Spatially adjacent requests in 

the trace can be extracted from the stream of IOs targeting 

each disk, so the percent of sequential requests and the run 

lengths of sequential bursts are easily computed along with 

the logical distances (jumps) between sequential streams.  

Multiple concurrent streams of activity or streams with 

“holes” complicate the extraction and representation of 

sequentiality [11]. One way to detect mixed or fragmented 

streams is by comparing each request offset not only against 

the immediately previous request offset and length, but also 

to a window of N previous requests [1].  More complex 

algorithms may reconstruct individual streams and allow the 

formulation of per-stream models of behavior with their own 

basic storage workload parameter distributions and even 

cross-stream interactions and dependencies [30]. 

Temporal locality refers to length of time between 

accesses to the same blocks of data.  Average block lifetimes 

are visible as overwrites at the disk level and as deletions, 

truncations, and overwrites at the file level [19]. 

The vast majority of server storage workloads are not 

steady state but rather fluctuate in intensity and behavior 

throughout the day, week, month, and year.  Accurate 

workload characterization means generating different 

parameter sets and values for different workload phases.  

Burstiness metrics for smaller time scales reflect fluctuating 

interarrival times between requests, thereby creating bursts 

of activity interspersed with idle periods. 

Analysis of file block usage can identify correlations (or 

the lack of correlation) between all of the above metrics and 

file-specific data such as file size, file lifetime, file attributes 

(e.g., write-through, sequential, or temporary) and file type 

(e.g., based on filename suffixes or the names of the 

containing directories).  Metadata traffic can also be 

separated out at the file event level. 

While the disk block events in the initial traces do contain 

filenames, the relationships between file blocks and disk 

blocks are not easily determined except for the case of hard 

page faults.  Still, the event data is sufficient to extract 

workload information about the “heat” of various file sets, 

the identification of files that are read-only/mostly or write-

only/mostly, the mixture of file types, and any other 

correlations that do not require knowledge of file offsets. 

Table 1 gives a set of basic metrics extracted from the 

new traces.  This table provides a high-level overview to aid 

in trace selection for specific analysis. As mentioned at the 

beginning of this section, statistical averages are insufficient 

to characterize most real-world traces, but they can be 

helpful in selecting traces of potential interest. 

Explanations for some of the metrics are given below. 

 IO Rate shows a miniature graph (Sparkline [25]) for 

each workload’s IO throughput as it varies over the 

duration of the trace  

 Average queue length on initiation is taken using 

samples at each request arrival time – not as an 

average over time 

 Average system interarrival refers to the interarrivals 

of all requests regardless of disk 

 Average disk interarrival refers to interarrival deltas 

between requests to the same disk 

 % sequential IOs initiated includes only those 

requests that are exactly sequential (no “holes”) and 

uninterrupted by nonsequential requests 

 Sequential run length metrics describe the 

uninterrupted streams of exactly sequential requests 

 Modes are the most common values in a set (as 

opposed to mean or median values) 

 80th percentile metric modifier indicates how many 

unique (“hot”) values constitute 80% of the total set 

 N/A indicates that data was unavailable at the time 

this paper was written 

 

 



 

 

 

 

 

TABLE I 

WORKLOAD STATISTICS FOR PRODUCTION AND BENCHMARK STORAGE SERVER TRACES 

Trace Statistics 
LM-

TFE 

LM-

TBE 

DAP-

DS 

DAP-

PS 

Exch-

5 

Exch-

24 

MSN-

CFS 

MSN-

BEFS 
WBS DTRS 

RAD-

AS 

RAD-

BE 

TPC-

C 

TPC-

E 

Duration 

(Hours)   24 24 24 24 5 24 6 6 24 24 18 18 0:05 0:10 

IO Rate (typically  
midnight to 

midnight)               

Avg IO/s 

 3.956 517.4 17.7 12.6 133.4 628.2 207.3 1351 145.9 205.9 40.2 84.4 50255 25432 

R 0.015 408.1 16.0 7.1 36.6 234.1 153 908 74.0 137.5 4.1 15.1 32337 23358 

W 3.941 109.3 1.7 5.5 96.8 394.1 54.3 443 71.8 68.4 36.1 69.3 17918 2074 

Total IOs 

(Millions) 

 0.342 44.77 1.53 1.09 11.54 54.16 4.48 29.35 12.63 17.16 1.99 4.19 15.08 15.26 

R 0.001 35.31 1.39 0.61 3.17 20.18 3.30 19.73 6.41 11.46 0.21 0.75 9.70 14.01 

W 0.341 9.46 0.15 0.48 8.38 33.98 1.17 9.62 6.22 5.70 1.78 3.44 5.38 1.24 

Total GB 

Transferred 

 8.92 2344 42.63 80.3 159.3 696.9 41.4 303.2 330.6 409.9 16.1 113.7 122.6 122.0 

R 0.01 1786 41.65 36.2 53.6 250.4 27.3 200.9 155.8 235.4 2.0 75.7 74.8 107.0 

W 8.90 558 0.98 44.1 105.7 446.5 14.1 102.3 174.8 174.5 14.1 38.0 47.9 15.0 

Avg Req 

Size (KB) 

 27.32 54.91 29.17 77.47 14.47 13.49 9.71 10.83 27.44 25.05 8.47 28.5 8.53 8.38 

R 11.55 53.04 31.50 62.13 17.75 13.01 8.67 10.68 25.49 21.54 10.29 106.0 8.08 8.01 

W 27.37 61.90 7.04 97.13 13.23 13.78 12.62 11.15 29.46 32.12 8.26 11.6 9.34 12.63 

Req Size 
Modes 

(KB) 

 4, 64 64 32 64 8, 4 8 4 8 4, 32 4, 64 4, 4.5 8, 120 8 8 

R 4 64 32 64 8 8 4 8 4, 32 4, 64 4, 5 120 8 8 

W 4, 64 64 4 4, 64 4, 8 4, 8 4 8 4, 32 64, 4 4, 4.5 8, 4 8 8 

Avg Q 

Length on 
Initiation 

 7.123 1.94 0.082 0.043 5.86 97.61 3.38 128.0 3.09 28.58 0.13 3.12 225.4 140.6 

R 0.075 0.51 0.074 0.005 2.73 42.59 2.48 94.6 3.60 15.15 0.15 0.41 213.4 138.5 

W 7.149 5.87 0.065 0.083 5.86 66.14 3.51 152.0 0.43 18.47 0.09 3.48 14.6 3.1 

Avg 

Response 

Time (ms) 

 11.32 1.96 3.42 0.77 1.79 3.17 12.09 15.04 3.21 10.12 0.95 6.01 4.38 5.35 

R 2.93 1.73 3.76 0.84 5.31 6.20 15.62 17.11 6.11 4.64 6.99 5.09 6.47 5.77 

W 11.36 2.85 0.18 0.68 0.45 1.37 2.14 10.78 0.22 21.13 0.26 6.22 0.61 0.52 

Avg System 

InterArriv 
(ms) 

 253 1.93 56.5 79.6 15.69 1.59 4.86 0.74 6.88 N/A 24.84 11.85 0.02 0.04 

R 66757 2.45 62.4 141.5 51.37 4.27 6.58 1.10 13.55 7.32 240.8 66.26 0.03 0.04 

W 254 9.15 594.1 181.8 21.66 2.54 18.53 2.26 13.96 14.72 27.70 14.42 0.06 0.49 

Avg Disk 

InterArriv 

(ms) 

 505 3.87 56.5 79.6 N/A 35.1 43.7 4.31 6.88 N/A 24.8 79.0 0.38 0.56 

R 66757 4.90 62.4 141.5 N/A 43.8 59.2 5.40 13.55 109.9 240.8 437.5 0.55 0.56 

W 507 18.30 594.1 181.8 N/A 54.5 166.8 13.16 13.96 N/A 27.7 96.1 0.98 7.34 

% Seq IOs 

Initiated 

 32.62 70.43 0.77 61.65 N/A 16.12 8.30 4.35 7.79 21.80 47.78 58.19 2.10 1.55 

R 13.99 66.47 0.51 97.41 N/A 4.76 7.81 1.93 13.09 20.13 3.63 11.77 0.001 0.034 

W 32.70 95.25 3.35 16.52 N/A 23.21 10.66 9.69 3.87 32.86 55.82 70.72 6.08 18.75 

Mean Seq 

Run Length 

(IOs) 

 4.62 11.2 2.69 17.09 3.35 3.28 2.76 3.00 3.53 4.01 7.91 21.47 46.04 32.99 

R 3.93 11.4 3.03 131.6 4.52 3.38 2.46 2.79 3.64 3.60 2.46 3.24 2.35 2.19 

W 4.63 182.8 2.37 3.23 3.24 3.30 4.35 3.17 3.42 6.78 12.83 43.91 1235 84.06 

Run Length 

Modes 
(IOs) 

 2, 3, 5 2, 3, 8 2 2, 3, 4 2, 4, 3 2, 4 2 2 2 2 4, 2, 8 2 2, 3 2 

R 2, 3, 4 2, 3, 4 2 2 2 2 2 2 2 2 2 2 2 2 

W 2, 3, 5 2, 3, 8 2 2, 3, 4 2, 4, 3 2,4 2 2 2 2, 8 4, 2, 8 2 2, 3, 4 2 

Mean Seq 

Run Length 

(KB) 

 241.4 648.6 61.9 1056 54.7 53.6 87.5 68.4 172.2 377.4 41.6 409.3 1083 862 

R 92.8 635.8 81.6 8294 186.5 133.9 60.5 78.9 334.9 253.8 74.1 628.2 55.6 19.5 

W 241.7 11723 42.8 178 40.0 45.5 219.0 65.9 474.1 837.7 64.4 446.9 29312 2313 

Run Length 

Modes 
(KB) 

 8, 128 128 8 128, 8 8, 1 8 68, 8 16, 1 8, 128 256 15 240, 1 1024 16 

R 8, 12 128 80, 12 80, 12 16, 24 16 68 16 8, 128 16 8, 128 240 16, 64 16 

W 8, 128 256 8 128, 8 8, 1 8 8, 68 1, 120 8 1024 15 1, 4, 8 1024 120 

Unique 

Files 

Accessed 

 818 15097 3647 4338 40428 138K 958K 331 1.1M N/A 20586 3818 220 199 

R 99 11938 3450 3962 34275 124K 654K 165 726K N/A 20190 2694 178 169 

W 733 4450 252 617 7020 16456 438K 270 793K N/A 16949 2661 45 37 

Hot Files 
(80% of 

total reqs) 

 16 219 1 191 87 72 180K 14 83463 N/A 18 2 1 1 

R 19 184 1 156 38 34 104K 9 62914 N/A 5311 3 1 1 

W 15 164 8 38 91 89 203K 21 64502 N/A 9 2 1 1 

 

V. TRACE ANALYSIS 

This section provides an analysis of selected workload 

characteristics for a subset of the described traces in order to 

give a flavor of some useful ways to visualize the data and 

identify interesting storage workload characteristics. Due to 

space limitations, only the most interesting figures for each 

workload are presented in this paper.  

 

A. Build and release servers (WBS and DTRS) 

Fig. 1 shows the sorted distribution of IO request sizes 

observed on the WBS while building Windows Server. Due 

to the large number of small files accessed, the most 

common request size is 4 KB, the default cluster size of the 

NTFS file system. Over 3.5 million requests (29% of the 

total) are for 4 KB, split evenly between reads and writes.  

Similarly, the DTRS has 42% of its requests accessing 4 KB 

(not shown). 



 

 

 

 

 

Spatial locality is a good indicator of how much disk 

actuator movement is required between servicing individual 

requests. It can be represented as the offset of the first block 

of a request relative to the last block of the most previous 

request to the same disk. Purely sequential requests have an 

offset of zero in the context of this analysis. 

Fig. 2 shows the short-distance spatial locality distribution 

while building Windows. 4% of write requests and 13% of 

read requests (value not graphed) are exactly sequential. 

Short distance “jumps” between temporally adjacent 

requests occur most often for 4 KB multiples up to 40 KB, 

both forward and backward.  Small backward jumps have 

unfortunate performance effects on rotating media, but small 

forward jumps can take advantage of hardware read 

prefetching and write buffering. In comparison, the DTRS 

trace contains 20% read and 32% write sequentiality. 

 
Fig. 1.  Read and write request size distribution in WBS trace. 

 
Fig. 2.  Short distance spatial locality of adjacent requests in WBS trace. 

B. Display Ads Platform servers (DAP-DS, DAP-PS) 

Fig. 3 shows the distribution of the interarrival times in 

100 microsecond buckets for the DAP-PS. While the vast 

majority of requests arrive within one second of the 

immediately previous request, the figure clearly shows 

periodic interarrival modes at multiples of one second (along 

the x-axis).  For example, the overlaid CDF function shows 

that 5% of all requests arrive exactly one second after the 

most previous request.  However, the log scale on the y-axis 

indicates that the magnitude of these interarrival time modes 

tails off sharply. The regularity of this behavior suggests a 

background service or timer that wakes up once per second 

during idle periods, or after a certain number of requests are 

issued, and issues IOs depending on system state.  By 

identifying the set of files accessed after these one-second 

delays, along with the specific processes issuing the IOs, 

those familiar with the workload can isolate the source of the 

behavior.  If the server environment is power-sensitive, such 

periodic activity may drag the system out of low power 

states and thus be inadvisable. 

Fig. 4 shows a similar distribution of request interarrival 

times for the DAP-DS. The interarrival histograms for these 

two workloads are quite distinct.  For example, while there 

are many histogram buckets for interarrival times less than 

250 milliseconds that are essentially empty for the DAP-PS 

trace, every corresponding bucket for the DAP-DS trace has 

at least 100 data points. 

Fig. 5 shows the distribution of the “hot file” read 

accesses for DAP-PS. The y-axis shows the percentage of 

read requests for the sorted list of files. 6% of all files 

accessed during the trace (roughly 240 files) receive more 

than 97% of the total read accesses, significantly exceeding 

the Pareto principle (also known as the “80/20” rule). These 

files do not appear on the list of hot files for disk writes 

since they are read-mostly or read-only files.  

 
Fig. 3.  Request interarrival times (100 second buckets) for DAP-PS trace. 

 
Fig. 4.  Request interarrival times (100 second buckets) for DAP-DS trace. 

 
Fig. 5.  Read access distribution for hottest 241 files in DAP-PS. 



 

 

 

 

 

C. Exchange server (Exch-5, Exch -24)  

Fig. 6 shows the distributions of read IO accesses across 

all Exch-24 disk arrays. This particular Exchange server has 

excess storage resources, so the disks have no problem 

providing the requisite throughput and responsiveness 

throughout the day.  However, the graph shows one massive 

spike of read activity across the six data disk arrays at 

approximately 3:30 AM. Digging deeper into the event 

traces clearly indicates which processes and files are active 

during this 15-minute window.   The cause of the spike is the 

Exchange replication task that occurs early each morning.  

 
Fig. 6.  IO rates in 15-minute increments for Exch-24 disk arrays. 

Fig. 7 shows the distribution of hot files for Exch-5. The 

y-axis shows the percentage of total accesses for the sorted 

list of files. Enumeration of the “hottest” files in the 

workload can reveal interesting interactions between the 

application and the system. In this case, more than 20% of 

all IOs are NTFS metadata updates (i.e., writes to on-disk 

NTFS metadata structures). While the top 40+ hottest files 

receiving read requests are all Exchange data files, the 

hottest write files constitute not only writes to the Exchange 

database log files but also NTFS log writes. They are visible 

on the figure as the set of files receiving about 3% of the 

total writes each. These metadata writes skew the overall 

read:write ratio from the 1:1 value expected by the Microsoft 

Exchange developers to a 1:2 value in favor of write 

accesses.  This discovery led to a more detailed investigation 

of potential causes for this behavior and possible “best 

practices” solutions. One tradeoff would be to set the system 

wide DisableLastAccess NTFS registry key if applications 

on the system do not need per-file last access times. 

 
Fig. 7.  Disk access distribution for hottest 125 files in Exch-5. 

 

Fig. 8 shows the distribution of idle period durations (i.e., 

when there are zero disk requests outstanding) for Exch-5.  

When designing intelligent storage hardware components, 

there is often the need to perform background activities (e.g., 

bit scrubbing, defragmentation, page cleaning).  As the best 

time to do this is during idle periods, determining the 

frequency and length of idle periods experienced throughout 

the phases of a given workload trace provides invaluable 

guidelines on what types of background activities are 

feasible and how finely the work has to be sliced in order to 

fit into the typical intervals. This particular graph shows that 

45% of the idle periods in the trace last less than 

15 milliseconds. The tail on this distribution extends out 

beyond a millisecond of idle time; there are some intervals 

where an Exchange disk array is idle for more than a second. 

 
Fig. 8.  Idle duration distribution for Exch-5 disk arrays. 

 

Analysis of the traces indicates an excess of IO requests 

split across array stripe unit boundaries (i.e, across multiple 

physical disks).  Microsoft Exchange Server best practices 

include forcibly aligning disk partition boundaries to prevent 

this behavior.  While Vista and Windows Server 2008 

automatically align partitions to 1 MB boundaries on typical 

disks, the traced server was running Windows Server 2003 

and the primary mailbox partition was in fact misaligned.  

This led to the discovery of misaligned mailbox partitions on 

other corporate Exchange servers. 

Misalignment of data within a file system can also 

degrade performance.  NTFS defaults to 4 KB clusters 

(allocation units) to conserve disk space, but this can result 

in misalignment for larger data objects such as the 8 KB data 

items found in an Exchange database.  Assuming 4 KB 

clusters and a hardware array stripe unit size of 256 KB 

(a reasonable choice for this workload), one might expect up 

to a 3% performance hit due to the extra disk accesses 

required for 8 KB requests that straddle stripe unit 

boundaries.  The instrumented system appears to have 4 KB 

NTFS clusters, resulting in 8 KB requests to the database 

files (the most common size) being occasionally misaligned.  

Reformatting the partition with 8KB or larger clusters could 

solve this.   

Feeding back this type of information provides real value-

add to system administrators willing to take and share traces, 

enabling them to make informed decisions on optimizing 

their systems. 



 

 

 

 

 

D. Radius back-end SQL server (RAD-BE) 

Fig. 9 shows the distribution of disk read accesses (y-axis) 

across the LBN ranges (x-axis) of individual disks (z-axis). 

While this graph gives a nice overview of how the LBN 

space is utilized, it becomes far more useful if some basic 

domain knowledge is applied to filter the trace for specific 

workload phases or sub-workloads or file sets.  Knowing 

how each portion of the disk space is used enables 

sophisticated data placement or reorganization to improve 

performance characteristics for the most important 

components of the storage workload.  For example, placing 

hot files and directories on partitions near the “outer” tracks 

of a modern disk drive can improve sequential throughput by 

as much as 2X depending on hardware bottlenecks in the 

storage paths and specific disk drive characteristics. Another 

example would be to take advantage of temporal locality 

across data sets by placing them on a disk in close proximity 

(based on LBN), thereby potentially reducing seek delays. 

 
 

Fig. 9.  Read access distribution across 500 MB buckets for RAD-BE. 

E. MSN storage file server (MSN-BEFS) 

Fig. 10 shows the distribution of accesses to the hottest 

files for the MSN storage file server. The top 15 files receive 

both read and write traffic, in contrast to most of the other 

traces where hot files are read-dominated or write-

dominated.  This information can be used to configure 

caches appropriately. The top 10% of MSN-BEFS files 

receive more than 99% of the total disk accesses. 

 
Fig. 10.  Disk access distribution for hottest 35 files in MSN-BEFS. 

 

F. Database workloads: TPC-C and TPC-E 

Compared to real world traces, the TPC traces are much 

more steady state and have higher interarrival rates. Fig. 11 

and Fig. 12 show the system-wide (not per-disk) request 

interarrival time distributions in 100-microsecond buckets 

for TPC-C and TPC-E, respectively. Request counts are 

plotted along the y-axis on a log scale. The majority of 

TPC-C requests arrive within one millisecond of the 

immediately previous request. However, there is a tail of 

requests arriving up to 10 milliseconds after the previous 

request. In contrast, almost all IO requests for TPC-E arrive 

within one millisecond of the immediately previous request.  

 
Fig. 11.  Request interarrival times (100 second buckets) for TPC-C. 

 

Fig. 12.  Request interarrival times (100 second buckets) for TPC-E. 

VI. SELF-SIMILARITY IN TIME AND SPACE 

Self-similarity can help characterize and model the 

burstiness of storage workloads. 

A. Theory of self-similarity 

This section gives a brief introduction of the definitions of 

self-similarity and its estimation methodologies [5] [6] [7]. 

Informally, self-similarity means that a stochastic process 

looks “roughly” the same on any scale. Consider a stochastic 

process X = {X1, X2, X3, …} with mean µ and variance σ
2
. Its 

autocorrelation function r(k) for (k ≥ 1) is defined as  

2
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, k = 1, 2, 3, …) denote a process obtained by 

averaging X over non-overlapping blocks of size m: 

Xk
(m ) 

= (X(k-1)m+…+Xkm-1)/m, where m = 1, 2, ... 

Then the process X is called second-order self-similar with 

self-similarity Hurst parameter H if, for all k large enough, 
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(m)

(k) is the autocorrelation function of X
(m)

, Cr is a 

positive constant, and 0.5 < H < 1. 



 

 

 

 

 

This paper uses variance-time plot to get the Hurst 

parameter of the disk IO processes. The method of variance-

time plot is based on the fact that the variances of the sample 

mean are decaying more slowly than the reciprocal of the 

sample size:  

var(X
(m)

) ~ a1m
2H-2

, 

where a1 is a finite positive constant. Therefore, the log-log 

plot of the variance of X
(m)

 over m has a slope approximated 

as (2H-2). 

B. Temporal self-similarity 

The self-similarity of the arrival processes of IO requests 

are examined for four of the traces described in Section III: 

DAP-DS (Display Ads Platform data server), DAP-PS 

(Display Ads Platform payload server), WBS (Windows 

build server), and MSN-BEFS (MSN back-end file server). 

Fig. 13 illustrates the variance-time plot for the overall 

arrival process of each trace.  Higher H values are indicated 

for workloads with data points that maintain fairly constant 

y-values.  All the arrival processes display strong self-

similarity except that of DAP-PS. 

 
 

Fig. 13.  Variance-time plot for the total arrival rate of four IO traces. 

TABLE II  
HURST PARAMETER OF IO REQUEST ARRIVAL RATES ESTIMATED BY 

VARIANCE-TIME METHOD 

Trace 
H 

R W Total 

DAP-DS 0.966 0.832 0.938 

DAP-PS 0.461 0.705 0.548 

WBS 0.945 0.939 0.958 

MSN-BEFS 0.878 0.744 0.872 

Disk0 N/A 0.686 0.676 
Disk1 0.844 0.883 0.893 

Disk4 0.875 0.688 0.865 

Disk5 0.878 0.688 0.869 

 

Table II lists the estimated H values for different arrival 

processes. In addition to the total arrivals to each system, the 

Hurst parameters of arrival processes for read and write 

requests to each disk are also estimated. Note that due to the 

small number of requests to Disk 0 in the MSN-BEFS trace, 

its H value is not available. Although DAP-PS does not 

show self-similarity in the total arrival process, its write 

arrival process has an H value of over 0.7. MSN-BEFS is 

aggregated by the requests for mainly four disks. Each disk 

has similar H values with the total arrival process except 

Disk 0, which has fewer requests than the other disks.  

Alternatively, the total arrival process can be viewed as an 

aggregation of the arrival processes of each file. Fig. 14 

displays the estimated H of the arrival processes to the top 

40 “hottest” files in MSN-BEFS, which service close to 

100% of the total request load (as shown in Fig. 10). Most of 

these processes give H values of approximately 0.7. The 

self-similarity does not have a strong relationship with the 

relative heat of the files.  

 
Fig. 14.  Hurst parameters of arrival rates for hottest 40 files in MSN-BEFS. 

C. Spatial self-similarity 

Similar analysis is given for the spatial behavior of the 

disk access locations. Let Yt denote the number of requests 

with starting location on block bucket t for t ≥ 0. Then H of 

Yt tells the self-similarity degree of the request starting 

locations. Table III summarizes the estimated H values for 

the four traces using the variance-time plot method. Most of 

the traces display very strong self-similarity with H larger 

than 0.9. In general, the write processes have lower H values 

than the read processes.  

DAP-PS still has a low H, which indicates weak self-

similarity for the total request set. However, its read request 

pattern gives an H value as high as 0.963 for the starting 

locations, while its write request pattern does not show self-

similarity. This is opposite to the temporal behavior of DAP-

PS reads and writes as shown in Table II. WBS has a similar 

request arrival process H value to that of  DAP-DS, but a 

significantly lower H value when computing spatial self-

similarity.  

 
TABLE III  

HURST PARAMETER OF LBN ESTIMATED BY VARIANCE-TIME METHOD 

 

These types of self-similarity analyses improve the accuracy 

of analytic modeling for different applications.  They 

represent a promising avenue for future investigation. 

Trace 
H 

R W Total 

DAP-DS 0.983 0.616 0.940 

DAP-PS 0.963 0.564 0.581 

WBS 0.827 0.700 0.792 

MSN-BEFS    
Disk0 N/A 0.938 0.940 

Disk1 0.967 0.931 0.934 

Disk4 0.931 0.847 0.919 
Disk5 0.936 0.857 0.925 



 

 

 

 

 

VII. SUMMARY AND FUTURE WORK 

The availability of comprehensive long-term traces of 

storage activity from a variety of production servers should 

enable more accurate modeling, simulation, research, 

development, and implementation of storage subsystem 

software, firmware, and hardware components. Virtually 

anyone having access with appropriate privileges to a 

production server running Windows Server 2008 can use its 

highly tunable in-box tracing capability to capture such 

traces. Ideally, a wide range of companies and individuals 

will provide traces to the broader storage community and 

publish associated analyses. 

A set of twelve initial production server traces spanning a 

variety of workloads are characterized in this report.  A 

lengthy set of extracted statistics as well as some sample 

visualizations are provided as a first step in the analysis of 

these traces.  Future publications will undoubtedly expand 

on this analysis and provide deeper insights into the 

particulars of specific workloads.  As more workloads are 

added to the list of publicly available traces, they will be 

analyzed using the ever-growing set of extraction scripts and 

visualization techniques.  As tracing technology continues to 

improve, it may be possible to collect correlated end-to-end 

traces across multiple systems and networks. 

In the near future, the authors hope to develop a Windows 

host model to enable closed-loop event-based simulation by 

emulating the Windows scheduler.  ETW process, thread, 

context switch, and other scheduler events could be fed into 

the host piece of a joint software/hardware storage model to 

allow a workload to be realistically scaled as the underlying 

hardware model’s performance characteristics are changed. 
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