
Evaluating the Impact of Dynamic Binary Translation Systems on
Hardware Cache Performance

Arkaitz Ruiz-Alvarez Kim Hazelwood
University of Virginia

Abstract
Dynamic binary translation systems enable a wide range of
applications such as program instrumentation, optimization,
and security. DBTs use a software code cache to store previ-
ously translated instructions. The code layout in the code cache
greatly differs from the code layout of the original program.
This paper provides an exhaustive analysis of the performance
of the instruction/trace cache and other structures of the micro-
architecture while executing DBTs that focus on program instr-
umentation, such as DynamoRIO and Pin.

We performed our evaluation along two axes. First, we di-
rectly accessed the hardware performance counters to deter-
mine actual cache miss counts. Second, we used simulation to
analyze the spatial locality of the translated application. Our re-
sults show that when executing an application under the control
of Pin or DynamoRIO, the icache miss counts actually increase
over 2X. Surprisingly, the L2 cache and the L1 data cache show
a much lower performance degradation or even break even with
the native application. We also found that overall performance
degradations are due to the instructions added by the DBT it-
self, and that these extra instructions outweigh any possible
spatial locality benefits exhibited in the code cache. Our obser-
vations held regardless of the trace length, code cache size, or
the presence of a hardware trace cache. These results provide
a better understanding of the efficiency of current instrumen-
tation tools and their effects on instruction/trace cache perfor-
mance and other structures of the microarchitecture.

1. Introduction
Dynamic binary translation offers a new perspective for pro-
gram analysis and modification. During the last few years,
researchers have developed several dynamic binary translation
systems, or DBTs, as extensible execution environments. Ex-
amples of these DBTs are Dynamo [2] and DynamoRIO [5, 6],
Valgrind [19], Strata [25] and Pin [16]. The most common
applications are program instrumentation [16], dynamic opti-
mization [2] and secure execution [13]. There are two main
methods for implementing binary instrumentation: probe-
based and JIT-based approaches. In probe-based systems, the
tool adds trampolines in the original binary to jump to the pay-
load code. In JIT-based systems, the DBT uses a JIT compiler
to dynamically modify and cache a copy of the program. The
modified copy of the program is divided into fragments and
stored in a code cache. In this paper, we focus on JIT-based

systems whose main focus is program instrumentation. We use
the term dynamic translation systems, or DBTs, to refer to
tools such as Pin, DynamoRIO, Valgrind, or Strata. We use the
term translated program to refer to programs running under
the control of a DBT with no added instrumentation. Finally,
we focus on DBTs that provide an API for performing program
instrumentation: Pin and DynamoRIO.

Every DBT adds overhead to the execution of the translated
program. This fact is particularly problematic for DBTs that fo-
cus on improving performance via program optimization, such
as Dynamo [2]. For other translation systems that focus on pro-
gram instrumentation, such as Pin and DynamoRIO, perfor-
mance still remains an important issue in that it may restrict the
applicability of the system. Therefore, several optimizations
have been developed to help improve the performance of DBT
systems, such as introducing a software-based code cache to
store previously translated code [10]. However, little attention
has been paid to the impact of the code cache on the underlying
hardware-based instruction cache of the processor. As the DBT
changes the program layout, one should expect to see signifi-
cantly different cache behavior. Furthermore, other researchers
have presented benchmarks in which the translated binary per-
forms as well or better than the original binary [2, 8]. The ex-
planation provided for this phenomenon is the icache effects
– the performance improvement of the processor’s instruction
cache due to better program locality. We can find examples in
the literature [3, 18, 24] that support this hypothesis. Bala et
al. [2] specifically mention that one “performance opportunity
is instruction cache utilization, since a dynamically contigu-
ous sequence of frequently executing instructions may often be
statically non-contiguous in the application binary.” However,
we have not been able to find instruction/trace cache benefits
while using DBTs whose main purpose is program instrumen-
tation (except for one benchmark, hmmer, executing under the
control of DynamoRIO).

We are not aware of any work that has provided an in-depth
analysis of hardware cache behavior of applications running
under the control of DBTs. Thus, in this paper, we provide a
thorough evaluation of the cache performance of dynamically
translated programs. The goals of our work are as follows:

• To measure the effect of dynamic binary translation on the
system cache (instruction/trace cache and L2 unified cache)
using hardware performance counters.

• To investigate locality changes within the code cache.

131978-1-4244-2778-9/08/$25.00 ©2008 IEEE

• To analyze how changes in the trace size, the code cache
size, and the use of instrumentation influence the perfor-
mance of dynamic translated programs.

• To correlate these measurements to the near-native perfor-
mance of certain benchmarks running under Pin and Dy-
namoRIO.

Our measurements, using the SPECint2006 benchmarks,
show that trace cache miss counts increase by 248% over
native with Pin, and 170% over native for DynamoRIO. This
increase in instruction/trace cache miss counts is exhibited
even in benchmarks that perform similar to native overall.
These miss counts increase further when the DBT has a limited
space for the code cache (a limitation that often appears in
embedded systems) and it is not able to fit the entire working
set of the benchmark in the code cache. I-TLB performance is
also affected by dynamic translation systems – the number of
I-TLB misses is increased for every benchmark. The effect of
dynamic binary translation is lower in the L2 cache, with an
increase in the number of misses by 12% for Pin and 24% for
DynamoRIO. The L1 data cache, on the other hand, performs
very similar to a native run, even with the added overhead of
the DBT’s data structures.

In order to understand these significant changes in perfor-
mance, we visualize the locality of translated binaries by dy-
namically analyzing the location of the instructions executed
in the code cache and in the original program. Our experi-
ments involve two microprocessors – an Intel Core 2 Xeon
E5310 (which has a traditional instruction cache) and a Pen-
tium4 (which has a trace cache). Our experiments show that the
major factor that affects overall performance is the increased
number of executed instructions, and that the instruction (or
trace) cache miss rates, L2 cache miss rates, trace size or trace
layout do not correlate to the performance of the entire system.

2. Background
Many researchers have developed dynamic binary translation
frameworks in recent years. Dynamo [2] is a DBT for PA-
RISC whose original focus was program optimization. Dy-
namoRIO [6] is an evolution of Dynamo (for x86) that offers
a user-interface for implementing custom modifications. Other
alternatives are Pin [16], Valgrind [19] and Strata [25]. In this
paper, we use Pin and DynamoRIO to perform the evaluation.
Thus we focus on DBTs whose main purpose is program instr-
umentation.

Pin is an instrumentation system designed and implemented
at Intel that provides a cross-platform API. Pin’s latest ver-
sion runs on three architectures: IA32 (32-bit x86), IA32e (64-
bit x86), and Itanium; and three operating systems: Windows,
Linux and MacOS (x86 version). Users may use Pin’s API to
implement portable plug-in tools for program analysis, which
are called Pintools. A Pintool consists of instrumentation rou-
tines and analysis routines. Instrumentation routines determine
where Pin should call the analysis routines. Analysis routines
perform predetermined actions and have complete visibility of
the program and the architectural state. This API provides a

simple, transparent way to investigate the behavior of programs
at run-time.

To translate an executable binary, Pin attaches to the appli-
cation like a debugger. Once Pin is injected into the applica-
tion, it uses a just-in-time compiler to translate and instrument
the program, while retaining control of it. The unit of compila-
tion in Pin is the trace. A trace is a sequence of instructions that
ends in an unconditional control transfer, a pre-defined number
of conditional control transfers, or a predefined number of in-
structions (e.g. 70). After Pin has selected a new trace, the Pin-
tool adds instrumentation using the API function calls, and Pin
compiles the instrumented trace and inserts it in a code cache.
Thus, none of the original program instructions are executed as
Pin only executes instrumented code in the code cache.

DynamoRIO is another DBT implemented in Windows and
Linux for IA32. DynamoRIO’s functionality is similar to Pin’s
and it exports an API for developing DynamoRIO clients. A
DynamoRIO client consists of hook functions that are called by
DynamoRIO when translating the original program (analogous
to a Pintool). Through the use of these functions, the user may
inspect and modify the program.

Similar to Pin, DynamoRIO must inject itself into the ap-
plication to gain control and perform the modifications using
a JIT compiler. However, the trace formation algorithm dif-
fers between DynamoRIO and Pin. DynamoRIO applies the
Next-Executed Tail [8] heuristic, while Pin forms traces from
fall-through paths. In addition, DynamoRIO only forms traces
from frequently-executed (50 executions) basic blocks. Thus,
DynamoRIO keeps two separate caches of code in software: a
basic block cache and a trace cache, while Pin has a single,
unified trace cache.

In this paper, we evaluate the effects on locality of trans-
lated programs without instrumentation using Pin to compare
the locality of the original program and Pin’s code cache. We
also perform a comparison of cache performance of Pin, Dy-
namoRIO, and the original program using hardware perfor-
mance counters.

3. Experimental Setup
Our experimental setup involves two microprocessors, an Intel
Pentium4 (32-bit with a trace cache) and an Intel Xeon Core 2
(64-bit with a traditional icache). For physical hardware mea-
surements, we use the interface provided by PAPI [15] and
perfex to read hardware performance counters. The hard-
ware counters report aggregate data, not specific address pat-
terns, therefore we used simulation to evaluate the spatial lo-
cality of the instructions. To this end, we implemented a Pin-
tool that gathers data about the relative location of consecu-
tive memory references of an application running under Pin’s
control and natively. We felt that this combination of hardware
measurements with instrumentation-based data offered a more
complete view of the impact of DBTs on cache performance.

3.1 Hardware Performance Counter Measurements
We used the hardware performance counters to gather cer-
tain statistics: the number of accesses/misses in the trace

132

Papiex Event Description
PAPI L1 ICM Level 1 instruction cache misses
PAPI L2 TCM Level 2 cache misses
PAPI TLB IM I-TLB misses
PAPI BR MSP Cond. branches mispredicted
PAPI BR PRC Cond. branches correctly predicted
PAPI TOT INS Instructions completed
PAPI RES STL Cycles stalled on any resource
PAPI TOT CYC Total cycles
PAPI L1 ICA Level 1 instruction cache accesses
PAPI L2 TCA Level 2 total cache accesses
Perfex Event Description
0x410143 L1 data reads and writes
0x410F45 L1 data cache lines replacements
0x410047 Weighted L1 miss cycles outstanding
0x410080 Fetches from ICache, stream buffers
0x410081 Fetch miss from ICache, stream buffers
0x410086 Cycles IFU stalled waiting for memory
0x410089 Branches mispredicted at execution
tsc Total cycles of program execution

Figure 1. List of events measured using the hardware perfor-
mance counters. papiex was used on the Pentium4 32-bit
processor, and perfex on the Xeon Core 2 64-bit.

cache (Pentium4) and instruction cache (Core2), L2 cache
accesses/misses, I-TLB misses, branch prediction accuracy,
cycles spent executing the program, and the total number of
instructions executed. For each program, we compare the per-
formance of the original binary with the performance under
both Pin and DynamoRIO with no instrumentation added and
no limit on the code cache. We used the SPECint2006 bench-
marks with reference inputs and three iterations. All graphs
include error bars that show an 80% confidence interval on
the sample average over the various repetitions and inputs (for
benchmarks with more than one reference input).

Both the Pentium4 and Core2 systems run a Linux kernel
2.6.9 (i686 for 32-bit and x86 64 for 64-bit) with the perfctr
patch applied. The 32-bit machine is a Pentium4 Xeon 3.20
GHz Dual Core running CentOS 4.6 with 8 GB of RAM. The
Pentium4 includes a 12 K-uop, 8-way associative trace cache.
The L1 data cache is a 16 Kb, 8-way associative cache with 64-
byte lines. The unified L2 cache is a 2 Mb, 8-way associative
cache with 64-byte lines.

The 64-bit machine is a Xeon E5310 QuadCore (Intel Core
2 architecture) with 8GB of RAM running CentOS 4.6. The
E5310 includes a traditional instruction cache of 32 Kb, 8-
way associative with 64-byte cache lines. The L1 data cache
also has 32 Kb, 8-way associativity and 64-byte cache lines.
The size of the L2 unified cache is 4 Mb, and it is 16-way
associative with 64-byte cache lines.

In order to read the hardware performance counters, we
implemented two simple plug-in tools (a Pintool and a Dy-
namoRIO client) that use the PAPI interface. Both plug-in tools
initialize the hardware performance counters at the beginning

of the program and print their values when the application com-
pletes. These lightweight tools do not have a measurable im-
pact on the performance of either Pin or DynamoRIO. The na-
tive performance data was obtained using papiex, which is a
simple tool that takes a program as the input, executes it and
prints out the final hardware performance counter values when
the program completes. We did not use papiex for gather-
ing statistics about Pin and DynamoRIO since they interfere at
launch time.

For the 64-bit platform (Intel Core 2) we used the perfex
tool due to the documented errors in the way papiex mea-
sures L1 cache misses on the Core2. Perfex is a lower-level
tool that provides a superset of the functionality of papiex.
We were able to use perfex to run the native and translated
programs under Pin’s control. We present only results based on
Pin since DynamoRIO does not operate on a 64-bit operating
system. Table 1 shows the specific events measured with both
PAPI and perfex.

3.2 Simulated Hardware Measurements
We use simulated hardware to investigate the changes in the
spatial locality of the application. We classify each executed
instruction into one of three different groups. An instruction
which is stored in the same cache line as the last executed
instruction is classified as same cache line. Instructions that are
preceded by an instruction on the same page but with a different
cache tag are classified as same page. Finally, instructions that
are preceded by an instruction on another page are counted in
the different page group. We assign the following parameters to
our simulated memory system: a cache line size of 32 bytes and
a page size of 4 Kb. These measurements are not intended to
be interpreted as a direct translation into the instruction cache
and I-TLB hit/miss ratio (although they are correlated). They
are collected to instead provide an intuitive indication of the
spatial locality exhibited by the application.

Our Pintool keeps track of two different addresses: the orig-
inal program address and the translated code cache address.
Thus, for every run we collect the following data:

• We gather original program addresses to obtain informa-
tion about the spatial locality of the original application.
Although Pin and DynamoRIO never execute the original
program, both systems will tell us what original addresses
would have executed, which we can use to drive our simu-
lator. Thus, we are able to obtain a fair locality comparison
since both programs, original and translated, share the exact
same execution path.

• We gather code cache addresses to obtain information about
the spatial locality of Pin’s code cache. However, function
calls to the analysis routines are present in the code cache,
and may potentially affect the measurements. We have tried
to minimize the impact of the these routines on the collected
data since we know the point at which we are inserting the
call to the analysis routine (at the beginning of each basic
block) and the approximate size in instructions (2 to 3) of
this call.

133

The instrumentation is done at a basic block granularity. For
each block in the code cache we keep a list of the instruction
memory address references of the original program and the
translated program The translated program instructions include
those added by Pin to correctly execute the translated program
under its control.

When the basic block is executed, Pin calls an analysis
routine that performs the following operations:

• Classifies the first instruction of the basic block by compar-
ing its address to the address of the last instruction executed
(this address is a global variable).

• Adds the number of instructions in each category to the
general counters.

• Updates the global variables with the addresses of the last
instruction of the basic block.

At program termination, the statistics are stored on disk.
Therefore, the Pintool simulates in each run two different
streams of memory references based on the original program
instructions and the translated program instructions. The main
advantage of the simulation is that we need not factor in the im-
pact of other Pin modules, such as the compiler and dispatcher,
and can focus exclusively on the spatial locality of the native
versus translated application.

For our simulations, we again used SPECint2006, but for
the benchmarks with more than one reference input, we ran
only the first input since the simulation process is orders of
magnitude slower than native. We ran each benchmark three
times, each time with a different value of the maximum trace
size allowed in Pin’s code cache. These values are 70 (the
default in Pin), 40 and 15 instructions. We also compared the
differences between 32-bit (Pentium4) and 64-bit (Intel Core
2) systems.

4. Evaluation
We begin by reporting the measurements obtained using hard-
ware performance counters. These measurements include sev-
eral structures of the microarchitecture: the instruction/trace
cache, I-TLB, L2 cache, and branch predictor. We show the
results when Pin and DynamoRIO have no limit in code cache
size and add no instrumentation. We also comment on our ob-
servations when we vary these two parameters. Next, we per-
form a comparison of the locality exhibited by translated bina-
ries. We use the Pintool described in Section 3.2 to gain insight
on the impact of the DBT on the spatial locality of the applica-
tion.

4.1 Hardware Performance Counters
As described in Section 3.1, we measured the cache perfor-
mance of binaries running under Pin and DynamoRIO. First,
Figure 2 shows the running time (cycles) for each benchmark
on a 32-bit architecture. The benchmarks are ordered from
shortest run time running under Pin – mcf – to longest run
time – perlbench. As we can see, several benchmarks per-
form very close to native: mcf, libquantum, hmmer and

Linux x86 32-bit Pentium 4 Benchmark Running Time

0

0.5

1

1.5

2

2.5

3

3.5

4

mcf libquan bzip2 hmmer astar h264 sjeng go omnetp gcc xalanc perl INT

P
ro

ce
ss

or
 c

yc
le

s
no

rm
al

iz
ed

 to
 n

at
iv

e
ru

n

Pin

DynamoRIO

Figure 2. Duration (cycles) of each SPECint2006 benchmark
while running under DynamoRIO and Pin. Results are normal-
ized to native run, and are sorted fastest to slowest.

Linux x86 64-bit Xeon Pin Benchmark Running Time

0

0.5

1

1.5

2

2.5

3

3.5

mcf astar bzip2 libquan hmmromnetp gcc sjeng h264 go xalanc perl INT

C
yc

le
s,

 In
st

ru
ct

io
ns

 R
et

ir
ed

Cycles

Instructions

Figure 3. Duration of each SPECint2006 benchmark (cycles
and instructions), running under Pin. Results are normalized to
native run, and are sorted fastest to slowest.

bzip2. Figure 3 shows similar results for a 64-bit architec-
ture, this time including the number of instructions executed.
On a 64-bit machine, only mcf is able to perform close to na-
tive with a slowdown of 5%.

Level 1 Instruction and Trace Cache Figure 4 shows
the normalized trace cache miss and access counts for the
SPECint2006 benchmarks on a 32-bit machine. The bench-
marks are ordered by their running time (shown in Figures 2
and 3). The benchmarks libquantum and hmmer running
with DynamoRIO represent effective trace cache behavior
compared to native execution (34% fewer trace cache misses
for libquantum and 15% fewer for hmmer). However, these
two benchmarks are the exception rather than the norm. All the

134

Linux x86 32-bit Pentium 4 Trace Cache

0

1

2

3

4

5

6

7

8

mcf libquan bzip2 hmmer astar h264 sjeng go omnetpp gcc xalanc perl INT

N
or

m
al

iz
ed

 T
ra

ce
 C

ac
he

 M
is

se
s/

A
cc

es
se

s Pin, Accesses

Pin, Misses

DynamoRIO, Accesses

DynamoRIO, Misses

Figure 4. Access and miss counts in the Pentium4 trace cache
for the SPECint2006 benchmarks with Pin and DynamoRIO.
Results are normalized to native (lower is better).

Linux x86 64-bit Xeon Instruction Fetch Unit Stalls

0%

5%

10%

15%

20%

25%

30%

35%

40%

mcf astar bzip2 libquanhmmromnetp gcc sjeng h264 go xalanc perl INT

C
yc

le
s

W
ith

 IF
U

 S
ta

lle
d

Native

Pin

Figure 5. Percentage of cycles during the SPECint2006
benchmark execution in which the Xeon E5310 instruction
fetch unit is stalled waiting for data from memory (lower is
better). Benchmarks were run under Pin.

other benchmarks perform similar or worse, with an average
of 2.5X more misses for Pin and 1.7X more for DynamoRIO.
The performance of the trace cache is closely related to the
I-TLB, which also increases in misses for every benchmark.
Figure 6 also presents the raw, non-normalized performance,
showing that the significant increase in trace cache misses is
not a product of low miss counts in the native run. If we only
consider benchmarks whose native trace cache miss count is
close to or greater than one billion, the increase in trace cache
misses under Pin is still at 230%.

We also performed the same experiments on the 64-bit ar-
chitecture. However, the low number of L1 instruction cache
misses greatly distorts the numbers when we normalize them

Linux x86 32-bit Pentium 4 Trace Cache

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

mcf libqun bzip2 hmmr astar h264 sjeng go omntp gcc xalan perl

A
bs

ol
ut

e
A

cc
es

se
s,

 M
is

se
s

Misses Accesses

Figure 6. Pentium4 trace cache accesses and misses for the
SPECint2006 benchmarks with Pin and DynamoRIO. The y-
axis has a logarithmic scale (lower is better).

Linux x86 32-bit Pentium 4 Level 2 Cache

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

N
at

iv
e

P
in

D
yn

am
R

IO
N

at
iv

e
P

in
D

yn
am

R
IO

mcf libquan bzip2 hmmer astar h264 sjeng go omntp gcc xalan perl

A
bs

ol
ut

e
A

cc
es

se
s,

M
is

se
s

Misses Accesses

Figure 7. Pentium4 L2 cache accesses and misses for the
SPECint2006 benchmarks with Pin and DynamoRIO. The y-
axis has a logarithmic scale (lower is better).

to native performance. Many benchmarks go from a very low
number of instruction cache misses (on the order of 100K) to
a dramatic increase (240x) without affecting the performance
significantly. Therefore, we explored other metrics. Figure 5
shows the percentage of the execution time (in cycles) in which
the processor’s instruction fetch unit (IFU) is waiting for data
from memory. There is no benchmark that shows an improve-
ment in instruction cache behavior for any metric: absolute
number of misses or absolute number of cycles in which the
IFU is stalled. Furthermore, most translated benchmarks that
perform poorly compared to native show a significant increase
in the number of cycles in which the IFU cannot fetch new
instructions.

135

Linux x86 32-bit Pentium 4 Trace Cache

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Time

P
er

ce
nt

ag
e

of
 tr

ac
e

ca
ch

e
m

is
se

s

perl bzip2
gobmk mcf
hmmer gcc
h264ref libquantum
sjeng xalanc
astar omnetpp

Figure 8. Distributions of Pentium4 trace cache misses over
time for the SPECint2006 benchmarks. Time is normalized for
each benchmark: data points were gathered at every 2.5% of
the duration of the benchmark.

Benchmarks that perform well (total running time) show a
significant increase in trace cache or instruction cache misses.
This increase may be caused by poor code layout, a bigger
memory footprint, or a greater number of executed instruc-
tions. When a DBT compiles a trace or a basic block, it must
add instructions to ensure the correct behavior of the applica-
tion: spilling registers, adding exit stubs, resolving conditional
branches, etc. As we will later show, a translated binary ex-
ecutes many times more instructions than the native binary,
and this is the main factor for this poor trace cache perfor-
mance. Additionally, the binary image is bigger for translated
programs since we now have to include the DBT in the mem-
ory footprint. Thus, benchmarks that used to fit in the L1 in-
struction cache will no longer fit when run under a DBT. The
DBT’s routines compete with the application for cache space,
degrading its performance.

Figures 8 and 9 show the distribution of trace cache and L2
misses over time for the SPEC benchmarks. Many misses do
occur at the beginning of the execution, and they are relatively
stable for the remainder of execution, with the exception of
phase changes for benchmarks like gcc. Yet, the misses are
high enough for many applications throughout run time that
its clear that we do not quite reach a steady state where only
translated code is executing.

We repeated these runs varying the code cache size and
adding instrumentation, and we summarize our results. If we
limit the code cache size, the performance of many benchmarks
completely degenerates as expected, with a miss count two
orders of magnitude worse than the native run. We found that
frequent code cache flushing sharply increases the miss count.
For benchmarks with a working set that does not fit in the code
cache, this is a serious performance issue. There are situations
in which the DBT has a limited amount of memory space
available, either because the device is embedded, or because

Linux x86 32-bit Pentium 4 Level 2 Cache

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Time

P
er

ce
nt

ag
e

of
 tr

ac
e

ca
ch

e
m

is
se

s

perl bzip2 gobmk

mcf hmmer gcc

h264ref libquantum sjeng

xalanc astar omnetpp

Figure 9. Distributions of Pentium4 L2 cache misses over
time for the SPECint2006 benchmarks. Time is normalized for
each benchmark: data points were gathered at every 2.5% of
the duration of the benchmark.

Linux x86 64-bit Pentium 4 Pin L1 Data Cache

0

0.5

1

1.5

2

2.5

mcf astar bzip2 libquan hmmr omntp gcc sjeng h264 go xalanc perl INT

N
or

m
al

iz
ed

 L
1

D
at

a
C

ac
he

L1D Accesses

L1D Misses

L1D Cycles miss outstanding

Figure 10. Access and miss counts (lower is better) for the
L1 data cache of the the Xeon E5310, including cycles during
which the L1 data cache has an outstanding miss. Benchmarks
are running under Pin’s control.

a large, commercial application is monopolizing all of the
resources.

When we include instrumentation, there is also a sharp in-
crease in the miss counts. We tried adding instruction-level
instrumentation (inlined), and trace-level instrumentation (in-
lined and not inlined). The DBT greatly slows down the appli-
cation and, as expected, the performance of the trace cache, L2
cache, I-TLB, and branch predictor degenerates.

Level 1 Data Cache In Figure 10, we show the L1 data cache
performance on the 64-bit Core2 machine. This figure includes
the accesses, misses, and cycles in which the L1 data cache has

136

Linux x86 32-bit Pentium 4 Level 2 Cache

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mcf libquan bzip2 hmmer astar h264 sjeng go omnetpp gcc xalanc perl INT

L2
 C

ac
he

 A
cc

es
se

s
an

d
M

is
se

s

Pin, Accesses

Pin, Misses

DynamoRIO, Accesses

DynamoRIO, Misses

Figure 11. Access and miss counts in the Pentium4 L2 cache
for the SPECint2006 benchmarks with Pin and DynamoRIO.
Results are normalized to native (lower is better).

an outstanding miss. Running a program under Pin puts ad-
ditional pressure on the data cache: Pin’s data structures used
during the JIT compiling process and the bookkeeping (to re-
tain control of the translated program) cause an increase in the
number of accesses to the data cache. However, we can see
that the relative number of data cache misses is very close to
native. This surprising result indicates that the locality of Pin’s
data structures do not negatively impact the L1 data cache per-
formance. However, since the number of misses and cycles
in which the data cache is waiting for data from memory do
not significantly improve over the native run we can not claim
that performance benefits will arise from this superior data lay-
out. We can conclude that, regarding the L1 data cache per-
formance, both the native program and the translated program
break even.

Level 2 Cache Figure 11 shows the performance of the L2
unified instruction/data cache. Despite the large increase in
trace cache misses when running with Pin, the L2 cache is able
to perform reasonably well compared to the original program.
Figure 7 also presents the raw, non-normalized performance.
We observed an average increase of 20-25% for all the INT
benchmarks, and found that half of the benchmarks perform as
well as the original program. Pin and DynamoRIO build frag-
ments of code at run-time as the program execution advances,
so code that is temporally near at execution time should be spa-
tially closer in the code cache than in the original binary image.
It may be the case that the instructions added by the DBT cause
the trace cache to have a higher miss rate, but the superior code
cache organization causes the L2 cache performance to remain
consistent.

Although we do not include an explicit graph, we found that
the picture is very similar on a 64-bit machine. All benchmarks,
except gcc, perform very close to native in L2 misses, with
an average of a 8% increase in the number of misses if we

Linux x86 32-bit Pentium 4 Branch Predictor

0

1

2

3

4

5

6

7

8

9

mcf libquan bzip2 hmmer astar h264 sjeng go omnetpp gcc xalanc perl INT

P
re

di
ct

io
n

A
cc

ur
ac

y

Pin, Correct

Pin, Incorrect

DynamoRIO, Correct

DynamoRIO, Incorrect

Figure 12. Pentium4 branch predictor performance. We report
the number of correct and incorrect predictions while running
SPECint2006 under DynamoRIO and Pin. Results are normal-
ized to a native run.

Linux x86 64-bit Xeon Pin Branch Mispredictions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mcf astar bzip2 libquanhmmeromnetp gcc sjeng h264 go xalanc perl INT

R
el

at
iv

e
B

ra
nc

h
M

is
pr

ed
ic

tio
ns

Figure 13. Number of branch instructions executed and mis-
predicted at execution for the SPECint2006 benchmarks. Re-
sults are normalized to a native run.

exclude gcc. This is a surprising result given that the increase
in the number of L1 instruction cache misses puts additional
pressure on the L2 cache. This result is similar to the L1 data
cache findings: both the native and translated program have
comparable misses even with a greater number of accesses
to both caches. However, this improved code and data layout
is not enough for the translated program to reap performance
benefits overall.

Branch Prediction We present the branch predictor perfor-
mance in Figure 12 for the Pentium4 and Figure 13 for the
Core2. There are significant increases in the number of mis-
predictions for some benchmarks, mainly those with the high-

137

Linux x86 32-bit Pentium 4 Instructions Executed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

mcf libquan bzip2 hmmer astar h264 sjeng go omnetp gcc xalanc perl INT

N
or

m
al

iz
ed

 In
st

ru
ct

io
ns

 E
xe

cu
te

d

Pin

DynamoRIO

Figure 14. Instructions executed for each SPECint2006
benchmark running under DynamoRIO and Pin. Results are
normalized to a native run.

est slowdowns when running under Pin or DynamoRIO. Some
benchmarks have a similar number of mispredictions running
under Pin or DynamoRIO compared to a native run. A common
characteristic of these benchmarks (mcf, libquantum and
bzip2 for Pentium4 and mcf for Core2) is that the running
time of the translated binary is close to the running time of the
native binary. The benchmarks with no significant increase in
mispredictions correlate to those with better performance. Pre-
vious results [12] have suggested a strong correlation between
the handling of indirect branches and the total slowdown ex-
hibited by the translated application.

There are two challenges to achieving similar branch pre-
diction performance in a translated program. First, resolving
the target of an indirect branch is a costly process that needs to
invoke the DBT’s routines. Second, the code cache can compile
and duplicate the same original code into several, sparse basic
blocks in the code cache. These basic blocks correspond to the
same original program instructions, but the hardware branch
predictor does not see the correlation. Thus, part of the branch
history used to predict the branch in the original program is lost
since it is scattered into several translated branch instructions.

Instructions Executed Figure 14 shows the number of ex-
ecuted instructions by Pin and DynamoRIO normalized to the
number of instruction executed by the original program. We
see that the benchmarks with the lowest overhead – mcf,
libquantum, bzip2, hmmer – are those with less inter-
vention from the DBT. Other researchers discuss several char-
acteristics that make a program run under the control of a DBT
without significant slowdowns: small binary image, low num-
ber of indirect branches [12], and long running times. A small
binary image means that the DBT has to translate fewer in-
structions, so the overhead from the JIT process is reduced.
A low number of indirect branches reduces the possibility of
having to transition from the code cache to the DBT routines

Linux x86 64-bit Pin Code Cache Locality

70%

75%

80%

85%

90%

95%

100%

or
ig cc

or
ig cc

or
ig cc

or
ig cc

or
ig cc

or
ig cc

or
ig cc

or
ig cc

or
ig cc

or
ig cc

mcf astar bzip2 libquan hmmr omntp sjeng h264 go xalan

M
em

or
y

R
ef

er
en

ce
 P

er
ce

nt
ag

e

Different Page

Same Page

Same Cache Line

Figure 15. Percentage of instruction memory references for
each of the following groups: next instruction is stored in the
same cache line, next instruction is on the same page, next
instruction is on a different page. We compare the original
program instructions to Pin’s code cache.

to resolve the target address of an indirect branches, which is
expensive. Finally, a long running time amortizes the overhead
from the initial translation (JIT compilation process). All these
causes of overhead directly correlate to an increasing number
of executed instructions. Thus, the near native performance
that some benchmarks exhibit is a direct result of the light in-
tervention of the DBT (few JIT compilation and indirect branch
solving required) and a long running time.

4.2 Simulation
We use the Pintool described in Section 3.2 to visualize the spa-
tial locality of translated binaries. Figure 15 shows the spatial
locality of the SPEC benchmarks executed under the control of
Pin on x86-64. (We also performed this experiment on x86-32,
and saw similar results.) On both architectures, the vast major-
ity of the instructions are followed by an instruction in the same
cache line. Furthermore, page changes are not very common.

In Figure 15, for both the original and translated programs,
there is a similar distribution of instructions in each category. In
relative numbers, there is not a significant difference, although
original binaries tend to have a slightly higher percentage of
instructions in the same cache line. Thus, the code layout in
the code cache is not responsible for the poor instruction cache
performance.

We repeated these experiments after reducing the maximum
cached trace length in Pin from its default value of 70 instruc-
tions. Despite exploring trace length limits of 15 and 40 in-
structions, we did not observe a significant impact on the local-
ity or number of instructions executed.

138

5. Related work
Our work relates to the various dynamic binary translation
systems that have been developed over the past few years, such
as Dynamo [2], DynamoRIO [6], Valgrind [19], Strata [25]
and Pin [16]. We have focused on Pin and DynamoRIO in
this paper, although we believe that the results will scale to
other DBTs that use a JIT compiler to translate code, and store
translations in a code cache.

In the original Dynamo paper [2], the authors mention that
most of the speedup gained by Dynamo was due to trace se-
lection, which improves code layout. There are several papers
where the authors report that programs running under the con-
trol of a DBT have run-time performance similar to the origi-
nal program [16, 29]. Some studies have pointed to the icache
effects as a benefit of DBTs [2, 3, 18, 24] and the main justi-
fication for superior performance when compared to the orig-
inal program [8]. However, most of the benchmarks analyzed
in our study of instrumentation-oriented DBTs exhibit slow-
downs compared to native execution. Only two benchmarks
show speedups: hmmer and mcf, while another three (bzip2,
libquantum, and astar) break even with the original bi-
nary in terms of performance. Two of them – hmmer and
libquantum – exhibit superior cache performance. Thus,
the benchmarks hmmer and libquantum are the only ex-
amples of positive icache effects. In general, both Pin and Dy-
namoRIO have a significant negative impact on the instruc-
tion/trace cache performance.

Cache performance and locality are very important concepts
in computer architecture. Thus, in the past decades there have
been many studies [9, 26, 27] that have analyzed the perfor-
mance impact and improved the design of caches. Apart from
hardware solutions, software solutions have been proposed to
reduce the miss rate of the instruction cache [17] and the data
cache [23]. These software optimizations are implemented in
compilers [7, 14, 22] or using profile information [20]. A DBT
uses compilation techniques to generate the translated traces,
but also may collect run-time information similar to profilers.

Several researchers have carried out cache performance
measurements using hardware performance counters to ana-
lyze the impact of compilation techniques [21], Java virtual
machines [4, 28], or profiling techniques [1]. Our study uses
the hardware performance counters to assess the impact of dy-
namic translation on the system cache. This approach presented
a key inconvenience in that hardware counters are unable to
differentiate the impact of the translated code from DBT code.
Thus, we used instrumentation to provide an intuitive picture
of the change in spatial locality as a result of the DBT.

Some authors have analyzed the best strategies to form
traces in DBTs, by describing several possible implementations
and evaluating the performance of each [3, 11, 12, 18, 24]. Our
work differs from these efforts in that the fragment construction
policies are fixed in Pin and DynamoRIO. Our motivation
is to provide a better insight into the impact of DBTs on
instruction/trace cache performance independent of the trace-
selection policy.

6. Conclusions
Dynamic binary translation is an effective way to modify appli-
cations for purposes such as security, program analysis and op-
timization. In order to modify the program and to maintain con-
trol, DBTs use JIT compilers which translate fragments of the
original application code, often storing them in a code cache.
Since cached code is executed in lieu of the original applica-
tion, program layout is affected.

In this paper, we have measured and analyzed the impact
of Pin and DynamoRIO on hardware cache performance. Con-
trary to earlier results with DBTs such as Dynamo, we have
found that the icache is negatively affected by binary trans-
lation systems. For the SPECint2006 benchmarks, Pin and
DynamoRIO increase the number of trace/instruction cache
misses by an average of 248% and 170%, respectively. This in-
crease in miss rate did not necessarily correlate with run-time
performance, however. Our measurements also reflect a large
I-TLB miss increase and a less dramatic increase in L2 cache
misses – 20% for Pin and 24% for DynamoRIO. Finally, the
L1 data cache performance is similar for both the translated
and original binary meaning that the DBT’s data structures did
not add significant pressure on the data cache.

To explain these results, we presented a visualization of the
spatial locality of translated binaries by dynamically analyzing
the location of the instructions executed. Our experiments on
two processors, Xeon Core 2 (instruction cache) and Pentium4
(trace cache), show that the major factor that affects cache per-
formance is the increase in the number of executed instructions
in translated programs.

Acknowledgments
Arkaitz Ruiz-Alvarez is funded by the Caja Madrid Founda-
tion. This work was also made possible by NSF CAREER
0747273, NSF CSR 0720803, SRC-GRC 1790.001, monetary
donations from Google and Microsoft, and equipment dona-
tions from Intel. We would also like to thank our shepherd,
Michael Hind, and the anonymous reviewers for their useful
feedback on earlier versions of this paper.

References
[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.

Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl. Continuous profiling: where have
all the cycles gone? ACM Transactions on Computer Systems
(TOCS), 15(4):357–390, November 1997.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–12, Vancouver, BC, Canada, June 2000.

[3] M. Berndl and L. Hendren. Dynamic profiling and trace cache
generation. In First Int’l Symposium on Code Generation and
Optimization, pages 276–285, San Francisco, CA, USA, March
2003.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: the performance impact of garbage collection. ACM

139

SIGMETRICS Performance Evaluation Review, 32(1):25–36,
June 2004.

[5] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework for
windows. In 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), Austin, TX, USA, December
2001.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure
for adaptive dynamic optimization. In First Int’l Symposium
on Code Generation and Optimization, pages 265–275, San
Francisco, CA, USA, March 2003.

[7] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 1–12, Atlanta, GA, USA, June 1999.

[8] E. Duesterwald and V. Bala. Software profiling for hot path
prediction: Less is more. In 12th Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 202–211, Cambridge, MA, October 2000.

[9] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for
program transformations with caches of arbitrary associativity.
SIGOPS Operating System Review, 32(5):228–239, December
1998.

[10] K. Hazelwood and M. D. Smith. Managing bounded code caches
in dynamic binary optimization systems. Transactions on Code
Generation and Optimization (TACO), 3(3):263–294, September
2006.

[11] D. J. Hiniker, K. Hazelwood, and M. D. Smith. Improving region
selection in dynamic optimization systems. In 38th Annual
International Symposium on Microarchitecture, pages 141–154,
Barcelona, Spain, November 2005.

[12] J. Hiser, D. Williams, A. Filipi, J. W. Davidson, and B. Childers.
Evaluating fragment construction policies for sdt systems. In 2nd
Annual Conference on Virtual Execution Environments, pages
122–132, Ottawa, ON, Canada, June 2006.

[13] W. Hu, J. Hiser, D. Williams, A. Filipi, J. Davidson, D. Evans,
J. Knight, A. Nguyen-Tuong, and J. Rowanhill. Secure and
practical defense against code-injection attacks using software
dynamic translation. In 2nd Annual Conference on Virtual
Execution Environments, pages 2–12, Ottawa, ON, Canada, June
2006.

[14] W.-M. W. Hwu and P. P. Chang. Achieving high instruction
cache performance with an optimizing compiler. In 16th
International Symposium on Computer Architecture, pages 242–
251, Jerusalem, Israel, May 1989.

[15] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and
T. Spencer. End-user tools for application performance analysis
using hardware counters. In 14th Conference on Parallel and
Distributed Computing Systems, pages 460–465, Richardson,
TX, USA, August 2001.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation. In
Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 190–200, Chicago,
IL, USA, June 2005.

[17] S. McFarling. Program optimization for instruction caches.
In Architectural Support for Programming Languages and
Operating Systems, pages 183–191, April 1989.

[18] D. Merrill and K. Hazelwood. Trace fragment selection within
method-based JVMs. In 4th Annual Conference on Virtual
Execution Environments, pages 41–50, Seattle, WA, USA, March
2008.

[19] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 89–100, San Diego, CA,
USA, June 2007.

[20] K. Pettis and R. C. Hansen. Profile guided code positioning. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 16–27, White
Plains, NY, USA, June 1990.

[21] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-
F. Wong. Compiler orchestrated prefetching via speculation
and predication. In Architectural Support for Programming
Languages and Operating Systems, pages 189–198, Boston, MA,
USA, October 2004.

[22] A. Ramirez, J. L. Larriba-Pey, and M. Valero. Software trace
cache. IEEE Transactions on Computers, 54(1):22–35, January
2005.

[23] G. Rivera and C.-W. Tseng. Data transformations for eliminating
conflict misses. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 38–49, Montreal, QC, Canada, June 1998.

[24] K. Scott, N. Kumar, B. R. Childers, J. W. Davidson, and M. L.
Soffa. Overhead reduction techniques for software dynamic
translation. In 18th International Parallel and Distributed
Processing Symposium, Santa Fe, NM, USA, April 2004.

[25] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and
M. L. Soffa. Reconfigurable and retargetable software dynamic
translation. In First Int’l Symposium on Code Generation and
Optimization, pages 36–47, San Francisco, CA, USA, March
2003.

[26] A. J. Smith. Cache memories. ACM Computing Surveys,
14(3):473–530, September 1982.

[27] A. J. Smith. Second bibliography on cache memories. Computer
Architecture News, 19(4):154–182, June 1991.

[28] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance monitors
to understand the behavior of java applications. In USENIX 3rd
Virtual Machine Research And Technology Symposium, pages
57–72, San Jose, CA, USA, May 2004.

[29] S. Wallace and K. Hazelwood. Superpin: Parallelizing dynamic
instrumentation for real-time performance. In 5th Annual
International Symposium on Code Generation and Optimization,
pages 209–217, San Jose, CA, USA, March 2007.

140

