
Accelerating Multi-core Processor Design Space Evaluation
Using Automatic Multi-threaded Workload Synthesis

Clay Hughes and Tao Li

Intelligent Design of Efficient Architecture Lab(IDEAL)
http://www.ideal.ece.ufl.edu

Department of Electrical and Computer Engineering，University of Florida
cmhug@ufl.edu, taoli@ece.ufl.edu

Abstract
The design and evaluation of microprocessor architectures

is a difficult and time-consuming task. Although small, hand-
coded microbenchmarks can be used to accelerate
performance evaluation, these programs lack the complexity
to stress increasingly complex architecture designs. Larger
and more complex real-world workloads should be employed
to measure the performance of a given design or to evaluate
the efficiency of various design alternatives. These
applications can take days or weeks if run to completion on a
detailed architecture simulator. In the past, researchers have
applied machine learning and statistical sampling methods to
reduce the average number of instructions required for
detailed simulation. Others have proposed statistical
simulation and workload synthesis techniques, which can
produce programs that emulate the execution characteristics
of the application from which they are derived but have a
much shorter execution period than the original. However,
these existing methods are difficult to apply to multi-threaded
programs and can result in simplifications that miss the
complex interactions between multiple, concurrently running
threads.

This study focuses on developing new techniques for
accurate and effective multi-threaded workload synthesis,
which can significantly accelerate architecture design
evaluation of multi-core processors. We propose to construct
synchronized statistical flow graphs that incorporate inter-
thread synchronization and sharing behavior to capture the
complex characteristics and interactions of multiple threads.
Moreover, we develop thread-aware data reference models
and wavelet-based branching models to generate accurate
memory access and dynamic branch statistics. Experimental
results show that a framework integrated with the
aforementioned models can automatically generate synthetic
programs that maintain characteristics of original workloads
but have significantly reduced runtime.

1. Introduction

The entire microprocessor industry is moving towards
multi-core architecture design. To take full advantage of
multi-core CPU chips, computer workloads must rely on
thread-level parallelism. Software engineers use multiple
threads of control for many reasons: to build responsive
servers that communicate with multiple parallel clients, to
exploit parallelism in shared-memory multiprocessors, to
produce sophisticated user interfaces, and to enable a variety
of other program structuring approaches. Multi-threaded

programming has been widely exploited in the construction of
real-world applications spanning everything from scientific
simulation to commercial applications. With the ongoing
language and library (e.g. Java, C#, OpenMP, C++/C-Pthreads
and Win32 threading APIs) design efforts, multi-thread
running on multi-core hardware is likely to be the prevalent
execution paradigm for the next generation of computer
systems.

The design, evaluation, and optimization of multi-core
architectures present a daunting set of challenges. The
complexity of today’s uni-core processors results in many
hundreds or thousands of tradeoffs being evaluated in the
early, high-level design phases. It is well known within the
processor architecture design community that examining
complex real-world applications using detailed performance
models is impractical. The design space exploration of multi-
core architectures is likely to be even more prohibitively
expensive. Not only the configuration of individual cores, but
also the interaction between cores (e.g. shared/private caches,
coherency protocols, interconnection topology, and
quantity/heterogeneity of multiple cores) needs to be
examined. To compound this problem, as the number of cores
and the complexity of their interconnects increase, simulations
become even slower. For example, compared with a simulator
that models a uni-core processor, a 16-core chip
multiprocessor simulator can slow down the simulation speed
by as much as 60x [1]. This trend will be even more
pronounced for simulating future multi-core architectures,
which are predicted to have an even a larger number of cores.
Due to the large simulation overhead of multi-core
architectures, those explorations and optimizations cannot be
pursued without developing techniques and tools that allow
designers and researchers to rapidly examine numerous design
alternatives for this emerging architecture paradigm.

To accelerate multi-core design evaluation, we propose
innovative techniques and methodologies for creating
synthetic multi-threaded workloads with significantly reduced
runtime. By applying techniques from statistical simulation to
these elements, we generate accurate workload
characterizations and produce a synthetic workload comprised
of the dynamic execution features of the original multi-
threaded program. We extend the concept of statistical flow
graphs proposed by Eeckhout et al. [2] to include thread
interactions. Moreover, we develop novel thread-aware data
reference models and wavelet-based branching models to
capture complex multi-threading memory access behavior and
architectural independent dynamic branch characteristics. A

163978-1-4244-2778-9/08/$25.00 ©2008 IEEE

walk of synchronized statistical flow graphs augmented with
the proposed novel memory and branching models
automatically produces a synthetic program emitted as a series
of low-level statements embedded in a C program. When
compiled, the synthetic program maintains the dynamic
runtime characteristics of the original program but with far
fewer instructions and significantly reduced runtime. Because
the miniature program can be compiled into a binary, it can
execute on a variety of platforms making it ideal for many
aspects of architecture design.

The rest of this paper is organized as follows: Section 2
provides a background on using workload synthesis to
accelerate architecture design evaluation. Section 3 proposes a
new method to produce synthetic multi-threaded workloads.
Section 4 describes our framework implementation. Section 5
evaluates the accuracy and effectiveness of synthetic multi-
threaded workloads. Section 6 summarizes related work.
Section 7 concludes the paper.

2. Workload Synthesis for Efficient Microprocessor
Design Evaluation

The prohibitively long simulation time in processor
architecture design has spurred a burst of research in recent
years to reduce this cost. Among those, workload synthesis [3,
4, 5] has been shown to be an effective methodology to
accelerate architecture design evaluation. The goal of this
approach is to create reduced miniature benchmarks that
represent the execution characteristics of the input applications
but have a much shorter execution period than the original
applications.

From the perspective of architectural design evaluation, it
is essential that the synthetic program efficiently and
accurately model the behavior of the original application. Prior
studies [3, 4, 5] focus exclusively on sequential benchmark
synthesis. While multiple independent sequential programs
can be used to study system throughput, and parallel execution
of sequential programs provides some information, multi-
threaded applications perform quite differently from
sequential programs executed in a multi-programmed manner.
Threads coordinate and synchronize with one another to
produce correct computation results. The interactions between
threads impose a global order on instructions and events.
Threads read and write shared variables in the memory
hierarchy, generating additional cache misses and coherency
traffic. These features result in design decisions that are
significantly different from those made based on multiple
sequential program execution

As an example, consider the program shown in Figure 1.
This very simple program generates two children, each of
which attempt to execute the function myFunction(), and then
waits for both threads to finish their work. All of the
operations in myFunction() are enclosed in a lock/unlock pair
to ensure that only a single thread is allowed access to the
operations that modify the global shared variable,
myUnsigned. Even this small program is capable of exposing
the difficulties involved in attempting to use multiple single-
threaded programs to mimic the behavior of a multi-threaded

program. The thread management functions, pthread_create()
and pthread_join(), and synchronization functions,
mutex_lock() and mutex_unlock(), imply timing within the
code. A concatenation of the three threads, forming a single-
threaded program, or even generating three separate programs
obfuscates or loses this timing information. In this work, we
propose a methodology to preserve this information and
encode it into a synthetic representation of the original
program.

#include <stdlib.h>

3. Proposed Multi-threaded Workload Synthesis
Techniques

Our proposed multi-threaded workload synthesis
techniques consist of three primary steps: workload
characterization, building and pruning statistical flow graphs,
and synthetic code generation. Because workload
characterization and statistical flow graph generation are so
tightly coupled, we include them together in the discussion
below.

3.1 Multi-threaded Workload Representation

We extend the statistical flow graph (SFG) proposed in [2,
6] to characterize a multi-threaded program’s dynamic
execution at the basic block level. In a SFG each node
represents a unique basic block and is annotated with the
corresponding execution frequency. An edge in the SFG
represents a branch annotated with taken/not-taken
probability. We perform a basic block-level profiling of the
original program to record a sequence of instructions within
each basic block. If there is interaction with a threading
library, we augment that basic block with additional
information (such as the starting address of a spawn thread in
the case of thread creation). We integrate the above
information into synchronized statistical flow graphs (SSFG)
which capture the statistical profile of both individual and
interacted threads.

#include <pthread.h>

void *myFunction(void *ptr);

pthread_mutex_t myMutex = PTHREAD_MUTEX_INITIALIZER;
size_t myUnsigned = 7;

int main(int argc, char *argv[])
{
 pthread_t threadA, threadB;

 pthread_create(&threadA, NULL, &myFunction, NULL);
 pthread_create(&threadB, NULL, &myFunction, NULL);

 pthread_join(threadA, NULL);
 pthread_join(threadB, NULL);
 return 0;
}

void *myFunction (void *ptr)
{
 pthread_mutex_lock(&myMutex);
 usleep(2);
 myUnsigned = myUnsigned + 1;
 myUnsigned = myUnsigned * 3;
 myUnsigned = myUnsigned + 10;
 pthread_mutex_unlock(&myMutex);
}

Figure 1. A sample multi-threaded program

164

Figure 2 illustrates an example of using the proposed
synchronized statistical graphs to represent a program
containing three separate threads. In Figure 2, T0 is the main
thread and T1 and T2 are two child threads. The graphs that
are generated for each thread are annotated to include
transition probabilities between each node in the graph as well
as inter-thread synchronization and sharing patterns. As can
be seen, a separate statistical flow graph is generated for each
of the threads. The edges are weighted according to the
transition probabilities derived from the original program. The
hashed nodes in T0, B and C, represent thread control points.
In this case, T1 is spawned in node B and T2 is spawned in
node C. Additionally, any potentially shared data is encoded
with the nodes. T1 and T2 have two separate critical sections
that were indicated as explicitly shared in the original
program, node F from T1 and node N from T2 (protected by
lock L1) and nodes G and I from T1 and node M from T2
(protected by lock L2). These SSFGs provide a profile of the
dynamic execution of each thread, exposing the effects of
synchronization and control flow between the threads.

3.2 Statistical Flow Graph Reduction

Once a synchronized statistical flow graph is created for
each thread, we apply the graph reduction factor method
proposed by Eeckhout et al. [2] to reduce node instances in the
statistical flow graph. For each node in the graph, its instance
count is divided by R where R is defined as the graph
reduction factor, so that the new instance counts are a factor R
smaller than the original. If the new instance count is less than
one, the node and all in- and out-edges are pruned from the
graph. This ensures that only frequently executed basic blocks
within the original workload are considered when generating
the synthetic code.

Because nodes are removed from the original SFG, the
reduced representation can become disconnected. While
previous research ignored the disconnected portions of the
graph, in our study all nodes remaining after the reduction
factor has been applied are retained and available for inclusion
in the synthetic. Currently, the appropriate R is derived
experimentally. We leave finding a heuristic that can be used
to determine the optimal reduction factor as our future work.

3.3 Code Generation

Once the reduced statistical flow graphs are created, we use
methods proposed for sequential workload synthesis [3, 5] to
instantiate low-level instructions enveloped in a traditional C
program. The synchronization primitives and thread-related
events such as create, join, detach, etc. are emitted as
assembly language macros and low-level system calls,
utilizing the interface provided by glibc and the OS. More
details on synthetic benchmark generation can be found in
Section 4.5.

4. Automatically Synthesizing Multi-threaded
Workloads

We implemented the proposed SSFG construction and
reduction methods described in Section 3. Our framework
consists of three components: front-end instrumentation,
program flow analysis, and code generation. Details about
each phase are discussed below.

T0 T1 T2

B
T1

C
T2

M
L2

G
L2

F
L1

I
L2

0.7

1

1

0.3

1 1

0.5 0.5

0.80.2

1

D

A

H

E K

O

J

1 1

P

1 1

N
L1

Figure 2. Sample SSFG. Edges are annotated to show transition
probabilities and nodes are annotated to show control points (B and
C in T0) and critical sections (F, G and I inT1 and N and M in T2)
which are protected by locks L1 and L2.

4.1 The Front End

The front-end of our automatic multi-threaded workload
synthesis framework is implemented using the Intel Pin tools
[7], a dynamic instrumentation system capable of capturing
the execution of an application by inserting customized code
at key program locations. We use a disassembler to identify
call sites for multi-threading primitives in the pthread library
and pass these addresses to the Pin tool. The tool monitors the
number of times a basic block is executed and its component
instructions, whether a branch is taken or not, and each
instruction’s data reference locality. If any calls are made to a
threading library, these events are categorized and associated
with the calling block.

For each basic block, a list of its instructions is recorded
and its starting address is used as a node identifier to build a
dynamic CFG. Each basic block is inserted only once; if it is
encountered again, its occurrence count is incremented. Edges
are inserted into the graph in a similar fashion; new edges are
added when nodes are added, otherwise their occurrence count
is incremented. The tail of each basic block is checked to see
whether the branch was taken or not taken and the result is
stored as a unique bit vector for each basic block. The front
end also collects information for routines within a target
binary, specifically the threading library functions used for
control, such as pthread_create() and pthread_destroy().
When one of these control points is identified, the
corresponding node is tagged according to the type of control
action. Profiling is also carried out at the instruction level so
that paired function calls, such as lock/unlock, can be
identified by their calling address. Identifying when the
program enters and exits these functions allows the framework
to capture portions of the user code intended to be
synchronized with other threads.

Overhead incurred during runtime has been minimized to
reduce the effects that profiling has on the timing of multi-
threaded programs [8]. To help achieve this minimization, we
make extensive use of the efficient data structures provided by
the Boost library [9] to manage the graphs. While our

165

framework is implemented as a customized Pintool, only the
front end utilizes the Pin Instrumentation Library and very
little analysis is performed at runtime. This makes the
framework portable to other instrumentation tools or
simulation environments.

4.2 Thread-aware Memory Reference Model

We propose to use a thread-aware memory reference model
to capture original program’s data reference locality. While
prior work [10, 11] based their memory models on a
program’s cache and TLB miss rates, our framework models
the stride of the effective addresses touched by the original
program. Thus, it captures programs’ inherent memory access
locality independent of microarchitecture implementations.
Our model distinguishes itself from previous stride-based
memory models [3, 5] in that it consists of two independent
parts: thread-private and thread-shared.

Private memory accesses are assumed to be any reference
that occurs outside of a critical section (not including read-
only shared data accesses) and any reference within a critical
section that is only touched by the current thread. The private
memory portion of the memory model maintains separate
stride information for memory reads and memory writes. For
each memory read, we record the stride between successive
references and store the result in a histogram. Memory writes
are handled the same way and stored in a separate histogram.
These histograms maintain counts for six stride values: 1-, 2-,
4-, 8-, 16-, 32-, and greater than 32-bytes. At analysis time, a
cumulative distribution of the stride values is generated for
each thread and used during the generation of the synthetic
program to generate a circular stream of memory references.

Shared memory accesses are recorded when any read or
write within a critical section touches a portion of memory
touched by another thread. Data for shared memory references

is stored at the instruction level as opposed to the thread level.
When an instruction accesses a shared memory location for
the first time, the effective address is recorded and a list is
started that records the effective address for all successive
memory references by that instruction. At analysis time, this
information is converted to a cumulative distribution for the
stride pattern of the instruction. This distribution is stored with
the instruction and the first reference address for use during
code generation. If this instruction is encountered during code
generation, a search is performed for any shared-memory
instruction with an effective address within 32 bytes. These
instructions are then matched to a common starting point
within the allocated shared memory and successive references
to these locations are based on the stride pattern.

Figure 3 provides an example of how the memory model
translates high-level memory references to low-level assembly.
In the sample code fragment, there are three variables:
u_int_1 and array_1, which are private, and myUnsigned,
which is shared. During profiling, the starting address is
recorded for the three shared memory references along with
the stride of the next reference for each instruction. For the
private references, separate write- and read-stride distributions
are maintained for each thread. At code generation time, the
starting addresses for the three shared references are matched
to one another and the base is inserted. If there are subsequent
traversals of this basic block, the memory reference will
change based on the stride distribution. In the example, the
address will never change since there was never an offset in
the effective address. The thread-private data references are
assigned strides based on the cumulative read and write stride
distributions for the thread. Memory operations are then
inserted into the synthetic with the stride offset. In the
example, all of the memory operation access integer values at
four-byte intervals.

S tarting
A ddress S tride

0 0 0 08049770

.

.

.

.

0 0 0 08049770

0 0 0 08049770

sub dw ord p tr [ebp-0x4],0x1

m ov dw ord ptr [ebp+edx*0x4-0x34],eax

m ov eax,dw ord p tr [ebp-0x8]

m ov edx,dw ord p tr [ebp-0xc]
W

W

m ov eax,dw ord p tr [0x8049770]

add eax,0x1

m ov dw ord ptr [0x8049770],eax

m ov edx,dw ord p tr [0x8049770]

S R

S R
S W

("m ovl % 1, % % eax" :"=a"(r_outa) :"m "(shared_m em Int[12]);

("m ovl % % eax, % 0" :"=m "(m em Int[53]) :"a"(r_outa));

.

.

.

.

G enerate M em ory
R eference F rom

D istrub tion

size_t m yU nsigned = 7;

vo id * m yFunction (vo id *p tr)
{
 uns igned in t i = 5 ;
 uns igned in t u_ in t_1 = 600;
 uns igned in t a rray_1[10] = {0 };
...
...
 m yU ns igned = m yU nsigned + 1 ;
 m yU ns igned = m yU nsigned * 3 ;
 m yU ns igned = m yU nsigned + 10 ;
 u_ in t_1 = u_ in t_1 - 1 ;
 a rray_1 [i] = u_ in t_1;
…
...
}

0 4 0 4 0 4

R
R

0 4 0 4 0 4

W rite S tride

R ead S tride

S R

W

Figure 3. Thread-aware memory reference model

166

4.3 Flow Analysis

As mentioned in Section 4.1, to reduce perturbations in the
system, which can influence the behavior of a multi-threaded
program [8], only minimal analysis is performed at run time.
The majority of the analysis is performed offline by parsing
the results and augmenting the control flow graph with
additional information. The final output of this offline analysis
is a series of statistical flow graphs like the ones shown in
Figure 2. Offline analysis consists of five steps: computing
edge weights, identifying child processes (threads), graph
reduction, branch modeling, and synthetic code generation.
Each step is described in more detail below.

4.3.1 Computing Edge Weights

During this phase of analysis, each node in the graph is
visited and transition probabilities are calculated and
appended to the edges. Since the program control flow graph
is a directed graph, transition probabilities can be computed
using the sum of a node’s out-edge weights and the weight of
each individual edge. The new weights replace the previous
counts and the conditional probability function (|)1Prob N Nn n−
can be used to evaluate the transition probability for a given
node, Nn.

4.3.2 Identifying Child Threads

While it is straightforward to identify ownership by thread,
it is much more difficult to identify which basic block is
responsible for a specific thread’s management, which is
critical when attempting to maintain the characteristics of the
original program. In this phase, we iterate through each node
in each statistical flow graph and identify the nodes
responsible for spawning a new thread. When a spawn-node is
encountered, the address stored as the target function is
checked against the address of each basic block in each graph
until a match is found. If that node does not yet have an
owner, the thread containing the node is recorded as the

spawn-target in the parent node. If the thread already has a
parent, the search continues until a target is found. When
selecting from a pool of available child process that execute
the same piece of code, it is impossible to determine when a
specific thread is spawned, only that a thread was spawned
with a specific starting address. Because these threads do
execute the same piece of code, this does not affect the
characteristics of the synthetic workload.

4.4 Wavelet-Based Branch Modeling

Prior workload synthesis studies [3] use a single global
statistic (e.g. taken/not-taken probability) to represent the
branch behavior of the original program. To achieve higher
accuracy, [5] incorporates transition rates to filter out highly
biased branches. To effectively capture workloads’ complex
branching patterns, we propose to profile the branch of each
basic block and store its dynamic execution (e.g. taken or not-
taken) as a bit vector. We found that a trace with length of 32
provides sufficient accuracy to capture branch dynamics of the
experimented workloads. We treat each bit vector as a time
series (e.g. 1 stands for taken and 0 represent not-taken) and
apply wavelet analysis [12] to extract key patterns of the basic
block’s branch dynamics. Wavelets can preserve both time
and spatial localization. Consequently, the complex branch
dynamics can be captured by a few wavelet coefficients. We
use 16 wavelet coefficients to capture dynamic branching
patterns and apply the K-mean algorithm to classify branching
patterns into clusters based on the similarity of their wavelet
coefficients. As a result, instead of storing an individual
pattern for each branch in synthetic programs, we use a
representative pattern for all branches within the same cluster
reducing the overhead of storing each block’s branch pattern.
Differing with prior work, our branch modeling technique
cost-effectively captures complex branch dynamics and is
independent of specific microarchitecture implementations.

Find Opcode

subl

Determine Operand B

%0

Determine Operand A

$0x1

Populate Variables

memInt[50])"=m"(

Mem
Access?

0 1 2 4 8 16 More

0

0.25

0.5

0.75

1

� Determine Memory Type
INT

LONG LONG
FLOAT
DOUBLE

� Determine Next Offset

� Increment Base

Branch?

Emit New Instruction

1) Identify Cluster ID

2) Append Branch Calculation
("mov %2, %0\n\t"
"and %1, %0\n\t"
"jnz I2_46_"
:"=r"(temp), "=m"(choose)
:"m"(branch[3]));

2

3

4

1

sub dword ptr [ebp-0x4],0x1

("subl $0x1, %0" :"=m"(memInt[50]));

Mem
Access?

Thread *R-SFG

Generate
Header

Enter *R-SFG

Check Thread
Control

Check Thread
Synchronization

Code Generator

Decrement
Node

Choose Next
Node

Figure 4. Control flow in code generator – *: Reduced SFG, ◊: Instruction from Pin, Δ: Synthesized instruction

167

4.5 Synthetic Benchmark Generation

The synthetic benchmark is generated by performing a
walk of the reduced statistical flow graph. The algorithm used
to generate the synthetic multi-threaded program is described
below along with a more in-depth explanation of the code
generator (the control flow of code generator is shown in
Figure 4).

Choose the statistical flow graph of the next thread,
beginning with thread zero (main thread).

Generate a header based on the thread’s ID. If the thread ID
is zero, emit the program header and information for the
main() function. Otherwise, generate a function header to
coincide with the thread ID.

Begin at the root of the reduced statistical flow graph. If
there is no root or the count of the starting node is zero, start
with the lowest labeled node that remains.

If the node is a tagged as a thread-management point
(spawn, destroy, detach etc.), determine which thread is
associated with the node’s control action, populate the
synthetic program with the appropriate assembly-level macro
or system call, and proceed to step 6. Otherwise, proceed to
step 5.

If the node is tagged as a thread-synchronization point (lock,
barrier, broadcast, etc.), determine which variable is associated
with the node’s control action and populate the synthetic
program with the appropriate assembly-level macro.
Otherwise, proceed to step 6.

Pass the node contents to the code generator – instead of
generating artificial code based solely on the characteristics of
a node, the code generator replicates the original opcode and
inserts operands derived from the original operands and the
average dependency distance for the instruction. Code is
inserted into the synthetic program by prefixing the
instructions with the ‘asm volatile’ label. The volatile directive
prevents the compiler from reordering or optimizing the
instructions.

Decrement the node instance in the statistical flow graph.
A cumulative distribution function, derived from the edge

probabilities, is used to determine the next basic block to
insert into the synthetic program. If the node has no out-edges
and there are still nodes remaining in the graph with instance
counts greater than zero, return to step 3. If all of the nodes
have been exhausted, return to step 1. Otherwise, using the
next basic block, return to step 4.

The functional part of the code generator is broken into
five potential phases, outlined in Figure 4. If the target
instruction is not a branch operation and has no memory
operands, then no modification is necessary. If the instruction
is a branch, the basic block’s cluster ID is used to select the
corresponding branch pattern bit vector. Two additional
operations are then appended to the basic block to choose the
branch target. All taken branch targets are the next-next-basic
block while not-taken branches are the next basic block. If the
operation accesses memory, the size of the operand and the
opcode type are checked to determine the appropriate memory
type. A uniform random variable is used to choose the next

stride from the histogram. Once the opcode and operands have
been determined, the instruction is populated with the
corresponding C-style variables and the instruction is written
out.

5. Evaluation
In this section, we examine the efficiency and accuracy of

using synthetic multi-threaded workloads for multi-core
performance evaluation. In addition, we contrast various
workload and architecture characteristics between the
synthetic and original multi-threaded benchmarks.

5.1 Experimental Setup

While the majority of research in workload synthesis and
statistical modeling is performed in a simulation environment,
the accuracy and efficiency of our proposed techniques were
tested across three read-world hardware platforms. A
summary of the system configurations for our test platforms
are listed in Table 1. We are limited to Intel processor
technology in our evaluations due to compatibility with Intel’s
VTune performance analyzer but the chosen platforms
represent three generations of multi-threaded/multi-core
hardware. Threads share both pipeline and caches on the
Hyper-threading machine. On the Dual Core Pentium D
machine, threads run on two separate cores, which only share
the front-side bus. The Core 2 Quad machine has four
homogeneous cores with an L2 cache shared between every
two cores. The Hyper-Threading machine and the Pentium D
are similar in that they are based on the same
microarchitecture but the Core 2 machine is based on a
completely new microarchitecture. A summary of the
microarchitecture characteristics for each machine is shown in
Table 2. We refer to these three machines as HT, Dual, and
Quad in this paper.

Table 1. Configuration of the experimental platforms

Parameter Platform A Platform B Platform C
Processor Pentium 4 Pentium D Core 2 Quad

Memory
1024MB
DDR400

4096MB DDR2-
4200

4096MB DDR2-
4200

Storage 80GB SATA 160GB SATA 180GB SATA
Operating
System SuSE 10.01 SuSE 10.01 SuSE 10.2

Table 2. Microarchitecture characteristics for the experimental platforms

Parameter Pentium 4 Pentium D Core 2 Quad

PEs
1 Physical/2
Virtual 2 Physical 4 Physical

Tech 130nm 90nm 65nm
Clock Speed 2.4GHz 2.8GHz 2.4GHz
FSB 400MHz 800MHz 1066MHz
Trace Cache 12k uOps 12k uOps --
L1I Cache -- -- 4x32kB 8-way
L1D Cache 1x8kB 4-way 2x16kB 8-way 4x32kB 8-way
L2 Cache 1x512kB 8-way 2x1MB 8-way 2x4MB 16-way
ROB Size 123 126 96
IUs ALU:3 AGU:2 ALU:3 AGU:2 ALU:3 AGU:2
FPUs 2 2 2

In this study, we used nine SPLASH-2 benchmarks [22]:
Barnes-Hut (16k Bodies), Cholesky (TK29.0), FFT (220 data
points), LU (1024x1024 Matrix), Ocean-Contiguous (258x258

168

Ocean Body), Ocean-Noncontiguous (258x258 Ocean Body),
Water-Spatial (2197 Molecules), Radix (3M keys, 1024 radix)
and Volrend (head-scaleddown4). We measured workload
performance and execution characteristics using Intel’s VTune
analyzer [23]. Since multi-threaded workloads exhibit non-
deterministic runtime behavior, we measured each workload
(both original and synthetic versions) using multiple runs and
reported average statistics.

5.2 Accuracy

To evaluate the accuracy of the proposed methodologies,
we examine relative cross-platform speedup obtained from the
synthetic benchmarks and compare with that reported using
the original workloads. Note that the raw CPI is a less suitable
metric in these evaluations for several reasons, the most
important of which is a) the dynamic instruction count can
change from run to run and b) the systems do not have a
common cycle time. Because we are using multi-threaded
programs, these timing variations can influence the thread
interleaving and thus the execution path of the program. This
is important because VTune performs sampling during
sleep/idle time, spin locks, and other periods where the thread
may not be doing useful work. If the synthetic derivation of a

program is truly representative of the program from which it is
derived, it should exhibit the same relative runtime
increases/decreases when it is run on the different machines.

Tables 3 compares cross-platform speedup measured using
both original and synthetic workloads with four threads. The
cross-platform speedup is calculated using the formula:

()

() ()

ExecutionTime Dual
Quad Original

Speedup OriginalDual ExecutionTime Quad
Original

=

In addition, we compute the average absolute errors using an
individual workload to measure of all cross-platform speedup
(e.g. cross-platform error), and using all benchmarks to
measure the speedup of two given platforms (e.g. cross-
benchmark error). As can be seen, the maximum error
introduced by the synthetic is 14.4%. Overall, the synthetic
version of the studied SPLASH-2 benchmarks results in a
cross-platform error ranging from 3.8% to 9.8% and a cross-
benchmark error with a margin of error between 6.5% and
7.9%. This suggests that the synthesized benchmarks can be
used to accurately evaluate various design alternatives during
multi-core design space exploration.

Table 3. Cross platform speedup
(The cross-platform speedup is calculated using the workload’s execution time on two out of the three platforms)

 Barnes Cholesky FFT LU Ocean-C Ocean-NC Water-SP Radix Volrend (Cross Bench-
mark Error)

Original 2.26 1.75 1.26 1.67 1.23 1.63 1.73 1.84 2.73
Quad /Dual Synthetic

(Error)
2.04

(-9.8%)
1.92

(9.7%)
1.30

(3.3%)
1.53

(-8.6%)
1.1

(-10.3%)
1.53

(-6.1%)
1.63

(-5.6%)
1.74

(-5.6%)
3.05

(11.7%)

(7.9%)
Original 2.87 1.8 1.96 3.03 2.8 3.45 2.93 2.28 3.92

Quad /HT Synthetic
(Error)

2.87
(0%)

1.98
(10%)

2.12
(8.5%)

2.64
(-12.9%)

2.84
(1.3%)

2.95
(-14.4%)

2.93
(0%)

2.41
(5.5%)

4.14
(5.6%)

(6.5%)

Original 1.27 1.02 1.55 1.82 2.28 2.12 1.7 1.24 1.44

Dual /HT Synthetic
(Error)

1.41
(11%)

1.03
(0.3%)

1.63
(5%)

1.73
(-4.7%)

2.57
(12.9%)

1.93
(-8.8%)

1.8
(5.7%)

1.38
(11.8%)

1.36
(-5.6%)

(7.3%)

 (Cross Platform
Error) (6.9%) (6.7%) (5.6%) (8.7%) (8.2%) (9.8%) (3.8%) (7.6%) (7.6%)

Figure 5. A comparison of instruction mix between synthetic (left) and original (right) FFT

169

5.3 Efficiency

Table 4. A comparison of runtime reduction ratio
between synthetic and original multi-threaded workloads

Ba

rn
es

C
ho

le
sk

y

FF
T

LU

O
ce

an
-

C

O
ce

an
-

N
C

W

at
er

-
SP

Ra
di

x

Vo
lr

en
d

HT 290 145 15 9 21 15 335 12 357
Dual 261 144 14 9 19 17 316 11 378
Quad 236 158 14 8 17 16 298 10 422

To evaluate the effectiveness of applying synthetic multi-
threaded workloads to multi-core performance evaluation, we
compare the execution runtime of the synthetic programs with
that of the original applications. The results are presented as
runtime reduction ratio in Table 4. In general, we observe
more than an order of magnitude decrease in execution time.
Because the number of basic blocks emitted during synthesis
is different for each program, the synthetic program generated
for LU is larger than those generated for the other
benchmarks, with respect to the original application, resulting
in a higher fraction of runtime. Two of the largest programs,
in terms of dynamic instruction counts, are Volrend and
Water-SP and the synthetic programs generated for these two
applications have two of the shortest runtimes. We expect the
technique to easily scale with large contemporary multi-
threaded workloads and to produce synthetic programs with
several orders of magnitude difference in runtime.

5.4 Workload Characteristics

We compare the inherent workload characteristics,
including dynamic instruction distribution and mix, between
original and synthetic workloads. The instruction count
distribution between the synthetic and original programs

correspond very well, with little deviation – less than 8% on
average. This implies that our techniques are capable of
capturing thread activities and appropriately scaling down
individual thread run time. Figure 5 illustrates instruction mix
between the original and the synthetic FFT benchmarks. As
can be seen, the instruction mix in the synthetic program and
the original program is similar. The differences are because
the code generator must swap some instructions for others
(e.g. cmov mov) because no attempt is made to preserve
values in the synthetic workload.

5.5 Microarchitecture Characteristics

We examined a variety of microarchitecture performance
characteristics using 4-thread synthetic workloads. Each
metric is compared with those of the original program. Figure
6 shows a comparison of CPI, L1 data cache and L2 cache hit
rates, and branch prediction accuracy on the Pentium D
system. We also performed microarchitecture characteristics
analysis on the HT and Core 2 Quad machines and their error
trends are similar. The maximum CPI discrepancy is 12%
(Ocean-cont). Our wavelet-based branch model accurately and
cost-effectively captures branch dynamic behavior, resulting
in an error margin less than 4%. Converging memory behavior
between the synthetic and the original is more challenging,
our thread-aware memory reference model overestimates L1
data cache performance on workloads Ocean-Cont, Ocean-
Non, Barnes, LU, and FFT. The estimated L2 cache
performance shows less discrepancy. This is because the
original SPLASH-2 workload datasets easily fit into the
processor L2 caches.

We breakdown all references to the L2 cache based on the
states of a cache block. The results on the Core 2 Quad
platform are shown in Figure 7. A MESI based coherency
protocol is used by the Core 2 Quad processors to maintain

0

0.5

1

1.5

2

2.5

3

3.5

Bar
ne

s

Cho
les

ky
FF

T LU

Oce
an

-C

Oce
an

-N
C

W
at
er

-S
P

Rad
ix

Vol
re

nd

C
PI

Original Synthetic

90

92

94

96

98

100

Bar
ne

s

Cho
les

ky
FF

T LU

Oce
an

-C

Oce
an

-N
C

W
at
er
-S

P

Rad
ix

Vo
lre

nd

C
ac

he
 H

it
R
at

e
(%

)

Original L1 Synthetic L1
Original L2 Synthetic L2

95

96

97

98

99

100

Bar
ne

s

Cho
les

ky
FF

T LU

Oce
an

-C

Oce
an

-N
C

W
at
er
-S

P

Rad
ix

Vo
lre

nd

B
ra

nc
h

Pr
ed

ic
tio

n
A
cc

ur
ac

y Original Synthetic

Figure 6. A comparison of CPI, cache hit rates, and branch prediction accuracy of the synthetic and original workloads

Table 5. Thread interaction comparison

Barnes Cholesky FFT LU Ocean-
C

Ocean-
N

Water-
SP Radix Volrend

Original 0.17% 1.27% 0.82% 0.25% 2.22% 2.62% 0.08% 0.64% 2.3% Locked Operations
Impact Synthetic

Error 3.5% 17.6% -3.2% 6.6% -3.2% 9.2% -11.4% -2.7% 11.7%

Original 0.24 0.27 0.17 0.1 0.02 3.1 0.18 0.23 0.23 Modified Data
Sharing Ratio per 1k
Instructions

Synthetic
Error -3.5% 11.6% 7.7% -10% 1% -9.2% 4.4% 2.6% 5.6%

Original 21 14 46 9 55 75 3 23 3 Data Snoop Ratio
per 1k Instructions Synthetic

Error -7% -4.8% -7.7% 13.2% 3.5% 6.8% -3.4% -1.6% -5.6%

170

the data consistency. The coherence protocol transitions the
state of each L2 cache line between Modified (M), Exclusive
(E), Shared (S), and Invalid (I) to reflect the current cache line
status among the four cores. The MESI-based L2 access
breakdown reveals the data sharing patterns between threads.
If a synthetic workload faithfully captures the data sharing
characteristics of its original counterpart, they both will
exhibit a similar breakdown of these events. The thread-aware
memory reference model that captures both private and shared
data access patterns as well as the read and write ratio of each
access pattern is responsible for these similarities. The results
shown in Figure 7 suggest that both the original and the
synthetic workloads stress cache coherency hardware
similarly and will generate similar coherence traffic among
the multiple cores.

0%

20%

40%

60%

80%

100%

ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN

Barnes Cholesky FFT LU Ocean-C Ocean-NC Water-SP Radix Volrend

L2
 A

ce
ss

 B
re

ak
do

w
n

Modified Exclusive Shared Invalid

Figure 7. L2 Access breakdown by MESI states

5.6 Data Sharing and Thread Interaction
We use the advanced multi-core performance counters

provided by the Core 2 Quad processors to analyze the impact
of thread interaction on both the synthetic and original
workloads. To be more specific, we examine VTune’s
modified data sharing ratio, locked operations impact, and
data snoop ratio. The modified data sharing ratio measures the
frequency of data sharing one two or more threads modify the
data in one cache line. The locked operations impact is a
measure of the penalty due to operations using the IA-32
LOCK prefix. The data snoop ratio is a measure of how often
a cache is snooped by an adjacent or external processing
element. The results of 4-thread workloads, shown in Tables 4
and 5, indicate that the synthetic significantly scales down the
runtime while still faithfully preserving thread interaction.

5.7 Limitations
In this research, we use real hardware platforms since the

non-deterministic execution characteristics of the multi-
threaded workloads cannot be captured using current cycle-
accurate simulators. However, the use of real hardware limits
the number of configurations and the scope of the design
space we can test. In our future work, we will perform
additional studies using simulators and compare the results
with those obtained using real hardware. Our framework is
built around the Pthread libraries but can be extended to use
OpenMP, UPC, MPI, or a combination of programming
models. The Pthread model makes the SPLASH-2 suite the
natural place to begin tests but we plan to include commercial
and server multi-threaded workloads.

6. Related Work
SimPoint [13] and SMARTS [14] apply machine learning

and statistical sampling to reduce the average number of
instructions required for detailed, cycle-accurate simulation of
each benchmark. SimPoint and SMARTS have been shown to
be quite successful for single threaded applications. On-going
efforts [15] suggest that it becomes more challenging to apply
these mechanisms to multi-threading/multi-core scenarios
since sampling can result in simplifications that can miss non-
deterministic executions, complex interactions between the
multiple threads and the operating system, and parallelism
among the multiple cores.

Recent proposals have used statistical simulation [2, 10,
11, 16-21] to reduce architecture simulation time. Statistical
simulation measures characteristics during normal program
execution, generates a synthetic trace with those
characteristics, and then simulate the synthetic trace. The
statistically generated synthetic trace is orders of magnitude
smaller than the original program sequence and results in
significantly faster simulation. For single threaded
benchmarks, Nussbaum & Smith and Eeckhout et al. both
showed that statistical simulation can quickly converge
(within 10k to 100k cycles) to a performance estimate
typically within 5% error when compared to detailed
simulation [2, 16]. To our knowledge, Nussbaum and Smith
built the first statistical multiprocessor model [11] and
reported errors less than 15%, on average, for the SPLASH-2
benchmarks. Their approach incorporated barrier, lock, and
critical section distributions derived from their source
programs. Their cache and branch models are limited to the
cache and predictor configurations for which the statistics
were collected. More recently, [19] used statistical simulation
to model multi-programmed workloads in a CMP in an
architecturally independent fashion. Their simulator is able to
model the shared cache structure and the program’s time-
varying behavior. In this work, we use workload
characterization techniques to capture fine-grained,
microarchitecture impendent thread interaction, memory
accesses, and branch behavior. Our framework is capable of
generating re-compilable and portable miniature benchmarks
that execute on real hardware and target the most complex
commercially available x86 ISA. In addition, we report both
accuracy and efficiency of synthetic multi-threaded workloads
across three real-world multi-threaded/multi-core processors.
To our knowledge, this paper presents the first work to
accurately and automatically synthesize multi-threaded
workloads. [24] proposed segmenting the simulator into
separate software and hardware components with the
hardware component managed by a FPGA. These simulators
are capable of executing 1M to 100M cycles per second. The
synthetic workloads can be applied to a FPGA-based
simulation accelerator to further reduce the simulation time.

7. Conclusions
Multi-core design evaluation is extremely time-consuming

because of the number of elements involved in any thorough
design study. This exploration is likely to become even more

171

time consuming as the number of cores per die increases. The
workload synthesis methods described in this paper for multi-
threaded programs attempts to address this problem.
Employing techniques from statistical simulation, we propose
to generate synchronized statistical flow graphs for multi-
threaded programs. These graphs contain not only the
individual thread attributes but also the inter-thread
synchronization and sharing characteristics. Using the novel
thread-aware memory reference models and the wavelet-based
dynamic branch models, we accurately capture and cost-
effectively preserve memory locality and branch behavior of
the original multi-threaded workloads. Combined with
memory and branch models, the synchronized statistical flow
graphs can be used to automatically generate a multi-threaded
synthetic workload comprised of the dynamic execution
features of the original program. The synthetic program is
emitted as a series of low-level statements embedded in C.
When compiled, the synthetic program maintains the dynamic
characteristics of the original program but with significantly
reduced runtime. Because the synthetic code can be compiled
into a new binary, it can be executed on a variety of platforms.
Our framework is modular and we expect to extend this
framework to encompass a variety of threading languages and
ISAs.

Acknowledgement
The authors would like to thank Dr. Robert Bell Jr. and the

IBM Center for Advanced Studies (CAS) for their comment,
feedback and support of this work. This research is partially
supported by SRC 2008-HJ-1798 and an IBM Faculty Award.

References
[1] D. A. Penry, D. Fay, D. Hodgdon, R.Wells, G. Schelle, D.
I. August and D. Connors, Exploiting Parallelism and
Structure to Accelerate the Simulation of Chip Multi-
processors, HPCA, 2006.
[2] L. Eeckhout, R. Bell Jr., B. Stougie, K. De Bosschere, and
L. John, Improved Control Flow in Statistical Simulation for
Accurate and Efficient Processor Design Studies, ISCA, 2004.
[3] R. H. Bell, Jr. and L. K. John, Improved Automatic
Testcase Synthesis for Performance Model Validation, ICS,
2005.
[4] C. Hsieh and M. Pedram, Microprocessor Power
Estimation using Profile-driven Program Synthesis, IEEE
Transactions on Computer Aided Design of Integrated Circuits
and Systems, vol. 17(11), pp. 1080-1089, 1998.
[5] A. Joshi, L. Eeckhout, R. H.Bell Jr., and L. K. John
Performance Cloning: A Technique for Disseminating
Proprietary Applications as Benchmarks, ISWC, 2006.
[6] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De
Bosschere, Deconstructing and Improving Statistical
Simulation in HLS, Workshop on Debunking, Duplicating,
and Deconstructing, 2004.
[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. Janapareddi, and K. Hazelwood, Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation, PLDI, 2005.

[8] A. Alameldeen, et al., Evaluating Non-deterministic Multi-
threaded Commercial Workloads, Proceedings of the
Computer Architecture Evaluation using Commercial
Workloads, 2002.
[9] Boost C++ Libraries. http://www.boost.org/
[10] D. Genbrugge, L. Eeckhout, K. De Bosschere, Accurate
Memory Data Flow Modeling in Statistical Simulation, ICS,
2006.
[11] S. Nussbaum, S. and J. E. Smith, Statistical Simulation of
Symmetric Multiprocessor Systems, Annual Simulation
Symposium, 2002.
[12] I. Daubechies, Ten Lectures on Wavelets, Capital City
Press, Montpelier, Vermont, 1992.
[13] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
Automatically Characterizing Large Scale Program Behavior,
ASPLOS, 2002.
[14] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C.
Hoe, SMARTS: Accelerating Microarchitecture Simulation
via Rigorous Statistical Sampling, ISCA, 2003.
[15] M. V. Biesbrouck, L. Eeckhout, and B. Calder,
Considering All Starting Points for Simultaneous Multi-
threading Simulation, ISPASS, 2006.
[16] S. Nussbaum and J.E. Smith, Modeling Superscalar
Processors via Statistical Simulation, PACT, 2001.
[17] L. Eeckhout and K. De Bosschere, Hybrid Analytical-
Statistical Modeling for Efficiently Exploring Architecture
and Workload Design Spaces, PACT, 2001.
[18] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De
Bosschere, Statistical Simulation: Adding Efficiency to the
Computer Designer’s Toolbox, IEEE Micro, 23(5):26–38,
2003.
[19] D. Genbrugge and L. Eeckhout, Statistical Simulation of
Chip Multiprocessors Running Multi-Program Workloads,
ICCD, 2007.
[20] A. Joshi, J. J. Yi, R. H. Bell Jr., L. Eeckhout, L. K. John,
and D. J. Lilja, Evaluating the Efficacy of Statistical
Simulation for Design Space Exploration, ISPASS, 2006
[21] M. Oskin, F. Chong, M. Farrens, HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor
Design, ISCA, 2000.
[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta,
The SPLASH-2 Programs: Characterization and
Methodological Considerations, ISCA, 1995.
[23] VTune. http://www.intel.com/software/products/vtune/
[24] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, E.
Johnson, J. Keefe, and H. Angepat, FPGA-Accelerated
Simulation Technologies (FAST): Fast, Full-System, Cycle-
Accurate Simulators, MICRO, December 2007.

172

