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Abstract 
The design and evaluation of microprocessor architectures 

is a difficult and time-consuming task. Although small, hand-
coded microbenchmarks can be used to accelerate 
performance evaluation, these programs lack the complexity 
to stress increasingly complex architecture designs. Larger 
and more complex real-world workloads should be employed 
to measure the performance of a given design or to evaluate 
the efficiency of various design alternatives. These 
applications can take days or weeks if run to completion on a 
detailed architecture simulator. In the past, researchers have 
applied machine learning and statistical sampling methods to 
reduce the average number of instructions required for 
detailed simulation. Others have proposed statistical 
simulation and workload synthesis techniques, which can 
produce programs that emulate the execution characteristics 
of the application from which they are derived but have a 
much shorter execution period than the original. However, 
these existing methods are difficult to apply to multi-threaded 
programs and can result in simplifications that miss the 
complex interactions between multiple, concurrently running 
threads. 

This study focuses on developing new techniques for 
accurate and effective multi-threaded workload synthesis, 
which can significantly accelerate architecture design 
evaluation of multi-core processors. We propose to construct 
synchronized statistical flow graphs that incorporate inter-
thread synchronization and sharing behavior to capture the 
complex characteristics and interactions of multiple threads. 
Moreover, we develop thread-aware data reference models 
and wavelet-based branching models to generate accurate 
memory access and dynamic branch statistics. Experimental 
results show that a framework integrated with the 
aforementioned models can automatically generate synthetic 
programs that maintain characteristics of original workloads 
but have significantly reduced runtime. 
 

1. Introduction 
 

The entire microprocessor industry is moving towards 
multi-core architecture design. To take full advantage of 
multi-core CPU chips, computer workloads must rely on 
thread-level parallelism. Software engineers use multiple 
threads of control for many reasons: to build responsive 
servers that communicate with multiple parallel clients, to 
exploit parallelism in shared-memory multiprocessors, to 
produce sophisticated user interfaces, and to enable a variety 
of other program structuring approaches. Multi-threaded 

programming has been widely exploited in the construction of 
real-world applications spanning everything from scientific 
simulation to commercial applications. With the ongoing 
language and library (e.g. Java, C#, OpenMP, C++/C-Pthreads 
and Win32 threading APIs) design efforts, multi-thread 
running on multi-core hardware is likely to be the prevalent 
execution paradigm for the next generation of computer 
systems. 

The design, evaluation, and optimization of multi-core 
architectures present a daunting set of challenges. The 
complexity of today’s uni-core processors results in many 
hundreds or thousands of tradeoffs being evaluated in the 
early, high-level design phases. It is well known within the 
processor architecture design community that examining 
complex real-world applications using detailed performance 
models is impractical. The design space exploration of multi-
core architectures is likely to be even more prohibitively 
expensive. Not only the configuration of individual cores, but 
also the interaction between cores (e.g. shared/private caches, 
coherency protocols, interconnection topology, and 
quantity/heterogeneity of multiple cores) needs to be 
examined. To compound this problem, as the number of cores 
and the complexity of their interconnects increase, simulations 
become even slower. For example, compared with a simulator 
that models a uni-core processor, a 16-core chip 
multiprocessor simulator can slow down the simulation speed 
by as much as 60x [1]. This trend will be even more 
pronounced for simulating future multi-core architectures, 
which are predicted to have an even a larger number of cores. 
Due to the large simulation overhead of multi-core 
architectures, those explorations and optimizations cannot be 
pursued without developing techniques and tools that allow 
designers and researchers to rapidly examine numerous design 
alternatives for this emerging architecture paradigm. 

To accelerate multi-core design evaluation, we propose 
innovative techniques and methodologies for creating 
synthetic multi-threaded workloads with significantly reduced 
runtime. By applying techniques from statistical simulation to 
these elements, we generate accurate workload 
characterizations and produce a synthetic workload comprised 
of the dynamic execution features of the original multi-
threaded program. We extend the concept of statistical flow 
graphs proposed by Eeckhout et al. [2] to include thread 
interactions. Moreover, we develop novel thread-aware data 
reference models and wavelet-based branching models to 
capture complex multi-threading memory access behavior and 
architectural independent dynamic branch characteristics. A 
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walk of synchronized statistical flow graphs augmented with 
the proposed novel memory and branching models 
automatically produces a synthetic program emitted as a series 
of low-level statements embedded in a C program. When 
compiled, the synthetic program maintains the dynamic 
runtime characteristics of the original program but with far 
fewer instructions and significantly reduced runtime. Because 
the miniature program can be compiled into a binary, it can 
execute on a variety of platforms making it ideal for many 
aspects of architecture design. 

The rest of this paper is organized as follows: Section 2 
provides a background on using workload synthesis to 
accelerate architecture design evaluation. Section 3 proposes a 
new method to produce synthetic multi-threaded workloads. 
Section 4 describes our framework implementation. Section 5 
evaluates the accuracy and effectiveness of synthetic multi-
threaded workloads. Section 6 summarizes related work. 
Section 7 concludes the paper. 
 

2. Workload Synthesis for Efficient Microprocessor 
Design Evaluation 
 

The prohibitively long simulation time in processor 
architecture design has spurred a burst of research in recent 
years to reduce this cost. Among those, workload synthesis [3, 
4, 5] has been shown to be an effective methodology to 
accelerate architecture design evaluation. The goal of this 
approach is to create reduced miniature benchmarks that 
represent the execution characteristics of the input applications 
but have a much shorter execution period than the original 
applications. 

From the perspective of architectural design evaluation, it 
is essential that the synthetic program efficiently and 
accurately model the behavior of the original application. Prior 
studies [3, 4, 5] focus exclusively on sequential benchmark 
synthesis. While multiple independent sequential programs 
can be used to study system throughput, and parallel execution 
of sequential programs provides some information, multi-
threaded applications perform quite differently from 
sequential programs executed in a multi-programmed manner. 
Threads coordinate and synchronize with one another to 
produce correct computation results. The interactions between 
threads impose a global order on instructions and events. 
Threads read and write shared variables in the memory 
hierarchy, generating additional cache misses and coherency 
traffic. These features result in design decisions that are 
significantly different from those made based on multiple 
sequential program execution 

As an example, consider the program shown in Figure 1. 
This very simple program generates two children, each of 
which attempt to execute the function myFunction(), and then 
waits for both threads to finish their work. All of the 
operations in myFunction() are enclosed in a lock/unlock pair 
to ensure that only a single thread is allowed access to the 
operations that modify the global shared variable, 
myUnsigned. Even this small program is capable of exposing 
the difficulties involved in attempting to use multiple single-
threaded programs to mimic the behavior of a multi-threaded 

program. The thread management functions, pthread_create() 
and pthread_join(), and synchronization functions, 
mutex_lock() and mutex_unlock(), imply timing within the 
code. A concatenation of the three threads, forming a single-
threaded program, or even generating three separate programs 
obfuscates or loses this timing information. In this work, we 
propose a methodology to preserve this information and 
encode it into a synthetic representation of the original 
program. 

#include <stdlib.h> 

 

3. Proposed Multi-threaded Workload Synthesis 
Techniques 
 

Our proposed multi-threaded workload synthesis 
techniques consist of three primary steps: workload 
characterization, building and pruning statistical flow graphs, 
and synthetic code generation. Because workload 
characterization and statistical flow graph generation are so 
tightly coupled, we include them together in the discussion 
below. 

3.1 Multi-threaded Workload Representation 
 

We extend the statistical flow graph (SFG) proposed in [2, 
6] to characterize a multi-threaded program’s dynamic 
execution at the basic block level. In a SFG each node 
represents a unique basic block and is annotated with the 
corresponding execution frequency. An edge in the SFG 
represents a branch annotated with taken/not-taken 
probability. We perform a basic block-level profiling of the 
original program to record a sequence of instructions within 
each basic block. If there is interaction with a threading 
library, we augment that basic block with additional 
information (such as the starting address of a spawn thread in 
the case of thread creation). We integrate the above 
information into synchronized statistical flow graphs (SSFG) 
which capture the statistical profile of both individual and 
interacted threads. 

#include <pthread.h> 
 
void *myFunction(void *ptr); 
 
pthread_mutex_t myMutex = PTHREAD_MUTEX_INITIALIZER; 
size_t myUnsigned = 7; 
 
int main(int argc, char *argv[]) 
{ 
   pthread_t threadA, threadB; 
 
   pthread_create(&threadA, NULL, &myFunction, NULL); 
   pthread_create(&threadB, NULL, &myFunction, NULL); 
 
   pthread_join(threadA, NULL); 
   pthread_join(threadB, NULL); 
   return 0; 
} 
 
void *myFunction (void *ptr) 
{ 
   pthread_mutex_lock(&myMutex); 
   usleep(2); 
   myUnsigned =  myUnsigned + 1; 
   myUnsigned =  myUnsigned * 3; 
   myUnsigned =  myUnsigned + 10; 
   pthread_mutex_unlock(&myMutex); 
} 

Figure 1. A sample multi-threaded program 
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Figure 2 illustrates an example of using the proposed 
synchronized statistical graphs to represent a program 
containing three separate threads. In Figure 2, T0 is the main 
thread and T1 and T2 are two child threads. The graphs that 
are generated for each thread are annotated to include 
transition probabilities between each node in the graph as well 
as inter-thread synchronization and sharing patterns. As can 
be seen, a separate statistical flow graph is generated for each 
of the threads. The edges are weighted according to the 
transition probabilities derived from the original program. The 
hashed nodes in T0, B and C, represent thread control points. 
In this case, T1 is spawned in node B and T2 is spawned in 
node C. Additionally, any potentially shared data is encoded 
with the nodes. T1 and T2 have two separate critical sections 
that were indicated as explicitly shared in the original 
program, node F from T1 and node N from T2 (protected by 
lock L1) and nodes G and I from T1 and node M from T2 
(protected by lock L2). These SSFGs provide a profile of the 
dynamic execution of each thread, exposing the effects of 
synchronization and control flow between the threads. 

3.2 Statistical Flow Graph Reduction  
 

Once a synchronized statistical flow graph is created for 
each thread, we apply the graph reduction factor method 
proposed by Eeckhout et al. [2] to reduce node instances in the 
statistical flow graph. For each node in the graph, its instance 
count is divided by R where R is defined as the graph 
reduction factor, so that the new instance counts are a factor R 
smaller than the original. If the new instance count is less than 
one, the node and all in- and out-edges are pruned from the 
graph. This ensures that only frequently executed basic blocks 
within the original workload are considered when generating 
the synthetic code. 

Because nodes are removed from the original SFG, the 
reduced representation can become disconnected. While 
previous research ignored the disconnected portions of the 
graph, in our study all nodes remaining after the reduction 
factor has been applied are retained and available for inclusion 
in the synthetic. Currently, the appropriate R is derived 
experimentally. We leave finding a heuristic that can be used 
to determine the optimal reduction factor as our future work. 

3.3 Code Generation  
 

Once the reduced statistical flow graphs are created, we use 
methods proposed for sequential workload synthesis [3, 5] to 
instantiate low-level instructions enveloped in a traditional C 
program. The synchronization primitives and thread-related 
events such as create, join, detach, etc. are emitted as 
assembly language macros and low-level system calls, 
utilizing the interface provided by glibc and the OS. More 
details on synthetic benchmark generation can be found in 
Section 4.5. 

4. Automatically Synthesizing Multi-threaded 
Workloads  
 

We implemented the proposed SSFG construction and 
reduction methods described in Section 3. Our framework 
consists of three components: front-end instrumentation, 
program flow analysis, and code generation. Details about 
each phase are discussed below. 
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Figure 2. Sample SSFG. Edges are annotated to show transition 
probabilities and nodes are annotated to show control points (B and 
C in T0) and critical sections (F, G and I inT1 and N and M in T2) 
which are protected by locks L1 and L2. 

4.1 The Front End  
 

The front-end of our automatic multi-threaded workload 
synthesis framework is implemented using the Intel Pin tools 
[7], a dynamic instrumentation system capable of capturing 
the execution of an application by inserting customized code 
at key program locations. We use a disassembler to identify 
call sites for multi-threading primitives in the pthread library 
and pass these addresses to the Pin tool. The tool monitors the 
number of times a basic block is executed and its component 
instructions, whether a branch is taken or not, and each 
instruction’s data reference locality. If any calls are made to a 
threading library, these events are categorized and associated 
with the calling block. 

For each basic block, a list of its instructions is recorded 
and its starting address is used as a node identifier to build a 
dynamic CFG. Each basic block is inserted only once; if it is 
encountered again, its occurrence count is incremented. Edges 
are inserted into the graph in a similar fashion; new edges are 
added when nodes are added, otherwise their occurrence count 
is incremented. The tail of each basic block is checked to see 
whether the branch was taken or not taken and the result is 
stored as a unique bit vector for each basic block. The front 
end also collects information for routines within a target 
binary, specifically the threading library functions used for 
control, such as pthread_create() and pthread_destroy(). 
When one of these control points is identified, the 
corresponding node is tagged according to the type of control 
action. Profiling is also carried out at the instruction level so 
that paired function calls, such as lock/unlock, can be 
identified by their calling address. Identifying when the 
program enters and exits these functions allows the framework 
to capture portions of the user code intended to be 
synchronized with other threads. 

Overhead incurred during runtime has been minimized to 
reduce the effects that profiling has on the timing of multi-
threaded programs [8]. To help achieve this minimization, we 
make extensive use of the efficient data structures provided by 
the Boost library [9] to manage the graphs. While our 
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framework is implemented as a customized Pintool, only the 
front end utilizes the Pin Instrumentation Library and very 
little analysis is performed at runtime. This makes the 
framework portable to other instrumentation tools or 
simulation environments. 

4.2 Thread-aware Memory Reference Model  
 

We propose to use a thread-aware memory reference model 
to capture original program’s data reference locality. While 
prior work [10, 11] based their memory models on a 
program’s cache and TLB miss rates, our framework models 
the stride of the effective addresses touched by the original 
program. Thus, it captures programs’ inherent memory access 
locality independent of microarchitecture implementations. 
Our model distinguishes itself from previous stride-based 
memory models [3, 5] in that it consists of two independent 
parts: thread-private and thread-shared.  

Private memory accesses are assumed to be any reference 
that occurs outside of a critical section (not including read-
only shared data accesses) and any reference within a critical 
section that is only touched by the current thread. The private 
memory portion of the memory model maintains separate 
stride information for memory reads and memory writes. For 
each memory read, we record the stride between successive 
references and store the result in a histogram. Memory writes 
are handled the same way and stored in a separate histogram. 
These histograms maintain counts for six stride values: 1-, 2-, 
4-, 8-, 16-, 32-, and greater than 32-bytes. At analysis time, a 
cumulative distribution of the stride values is generated for 
each thread and used during the generation of the synthetic 
program to generate a circular stream of memory references. 

Shared memory accesses are recorded when any read or 
write within a critical section touches a portion of memory 
touched by another thread. Data for shared memory references 

is stored at the instruction level as opposed to the thread level. 
When an instruction accesses a shared memory location for 
the first time, the effective address is recorded and a list is 
started that records the effective address for all successive 
memory references by that instruction. At analysis time, this 
information is converted to a cumulative distribution for the 
stride pattern of the instruction. This distribution is stored with 
the instruction and the first reference address for use during 
code generation. If this instruction is encountered during code 
generation, a search is performed for any shared-memory 
instruction with an effective address within 32 bytes. These 
instructions are then matched to a common starting point 
within the allocated shared memory and successive references 
to these locations are based on the stride pattern. 

Figure 3 provides an example of how the memory model 
translates high-level memory references to low-level assembly. 
In the sample code fragment, there are three variables:  
u_int_1 and array_1, which are private, and myUnsigned, 
which is shared. During profiling, the starting address is 
recorded for the three shared memory references along with 
the stride of the next reference for each instruction. For the 
private references, separate write- and read-stride distributions 
are maintained for each thread. At code generation time, the 
starting addresses for the three shared references are matched 
to one another and the base is inserted. If there are subsequent 
traversals of this basic block, the memory reference will 
change based on the stride distribution. In the example, the 
address will never change since there was never an offset in 
the effective address. The thread-private data references are 
assigned strides based on the cumulative read and write stride 
distributions for the thread. Memory operations are then 
inserted into the synthetic with the stride offset. In the 
example, all of the memory operation access integer values at 
four-byte intervals. 
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Figure 3. Thread-aware memory reference model  
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4.3 Flow Analysis  
 

As mentioned in Section 4.1, to reduce perturbations in the 
system, which can influence the behavior of a multi-threaded 
program [8], only minimal analysis is performed at run time. 
The majority of the analysis is performed offline by parsing 
the results and augmenting the control flow graph with 
additional information. The final output of this offline analysis 
is a series of statistical flow graphs like the ones shown in 
Figure 2. Offline analysis consists of five steps: computing 
edge weights, identifying child processes (threads), graph 
reduction, branch modeling, and synthetic code generation. 
Each step is described in more detail below. 

4.3.1 Computing Edge Weights  
 

During this phase of analysis, each node in the graph is 
visited and transition probabilities are calculated and 
appended to the edges. Since the program control flow graph 
is a directed graph, transition probabilities can be computed 
using the sum of a node’s out-edge weights and the weight of 
each individual edge. The new weights replace the previous 
counts and the conditional probability function ( | )1Prob N Nn n−  
can be used to evaluate the transition probability for a given 
node, Nn. 

4.3.2 Identifying Child Threads  
 

While it is straightforward to identify ownership by thread, 
it is much more difficult to identify which basic block is 
responsible for a specific thread’s management, which is 
critical when attempting to maintain the characteristics of the 
original program. In this phase, we iterate through each node 
in each statistical flow graph and identify the nodes 
responsible for spawning a new thread. When a spawn-node is 
encountered, the address stored as the target function is 
checked against the address of each basic block in each graph 
until a match is found. If that node does not yet have an 
owner, the thread containing the node is recorded as the 

spawn-target in the parent node. If the thread already has a 
parent, the search continues until a target is found. When 
selecting from a pool of available child process that execute 
the same piece of code, it is impossible to determine when a 
specific thread is spawned, only that a thread was spawned 
with a specific starting address. Because these threads do 
execute the same piece of code, this does not affect the 
characteristics of the synthetic workload. 

4.4 Wavelet-Based Branch Modeling  
 

Prior workload synthesis studies [3] use a single global 
statistic (e.g. taken/not-taken probability) to represent the 
branch behavior of the original program. To achieve higher 
accuracy, [5] incorporates transition rates to filter out highly 
biased branches. To effectively capture workloads’ complex 
branching patterns, we propose to profile the branch of each 
basic block and store its dynamic execution (e.g. taken or not-
taken) as a bit vector. We found that a trace with length of 32 
provides sufficient accuracy to capture branch dynamics of the 
experimented workloads. We treat each bit vector as a time 
series (e.g. 1 stands for taken and 0 represent not-taken) and 
apply wavelet analysis [12] to extract key patterns of the basic 
block’s branch dynamics. Wavelets can preserve both time 
and spatial localization. Consequently, the complex branch 
dynamics can be captured by a few wavelet coefficients. We 
use 16 wavelet coefficients to capture dynamic branching 
patterns and apply the K-mean algorithm to classify branching 
patterns into clusters based on the similarity of their wavelet 
coefficients. As a result, instead of storing an individual 
pattern for each branch in synthetic programs, we use a 
representative pattern for all branches within the same cluster 
reducing the overhead of storing each block’s branch pattern. 
Differing with prior work, our branch modeling technique 
cost-effectively captures complex branch dynamics and is 
independent of specific microarchitecture implementations. 
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4.5 Synthetic Benchmark Generation  
 

The synthetic benchmark is generated by performing a 
walk of the reduced statistical flow graph. The algorithm used 
to generate the synthetic multi-threaded program is described 
below along with a more in-depth explanation of the code 
generator (the control flow of code generator is shown in 
Figure 4). 

 

Choose the statistical flow graph of the next thread, 
beginning with thread zero (main thread). 

Generate a header based on the thread’s ID. If the thread ID 
is zero, emit the program header and information for the 
main() function. Otherwise, generate a function header to 
coincide with the thread ID. 

Begin at the root of the reduced statistical flow graph. If 
there is no root or the count of the starting node is zero, start 
with the lowest labeled node that remains. 

If the node is a tagged as a thread-management point 
(spawn, destroy, detach etc.), determine which thread is 
associated with the node’s control action, populate the 
synthetic program with the appropriate assembly-level macro 
or system call, and proceed to step 6. Otherwise, proceed to 
step 5. 

If the node is tagged as a thread-synchronization point (lock, 
barrier, broadcast, etc.), determine which variable is associated 
with the node’s control action and populate the synthetic 
program with the appropriate assembly-level macro. 
Otherwise, proceed to step 6. 

Pass the node contents to the code generator – instead of 
generating artificial code based solely on the characteristics of 
a node, the code generator replicates the original opcode and 
inserts operands derived from the original operands and the 
average dependency distance for the instruction. Code is 
inserted into the synthetic program by prefixing the 
instructions with the ‘asm volatile’ label. The volatile directive 
prevents the compiler from reordering or optimizing the 
instructions. 

Decrement the node instance in the statistical flow graph. 
A cumulative distribution function, derived from the edge 

probabilities, is used to determine the next basic block to 
insert into the synthetic program. If the node has no out-edges 
and there are still nodes remaining in the graph with instance 
counts greater than zero, return to step 3. If all of the nodes 
have been exhausted, return to step 1. Otherwise, using the 
next basic block, return to step 4. 

The functional part of the code generator is broken into 
five potential phases, outlined in Figure 4. If the target 
instruction is not a branch operation and has no memory 
operands, then no modification is necessary. If the instruction 
is a branch, the basic block’s cluster ID is used to select the 
corresponding branch pattern bit vector. Two additional 
operations are then appended to the basic block to choose the 
branch target. All taken branch targets are the next-next-basic 
block while not-taken branches are the next basic block. If the 
operation accesses memory, the size of the operand and the 
opcode type are checked to determine the appropriate memory 
type. A uniform random variable is used to choose the next 

stride from the histogram. Once the opcode and operands have 
been determined, the instruction is populated with the 
corresponding C-style variables and the instruction is written 
out. 

5. Evaluation  
In this section, we examine the efficiency and accuracy of 

using synthetic multi-threaded workloads for multi-core 
performance evaluation. In addition, we contrast various 
workload and architecture characteristics between the 
synthetic and original multi-threaded benchmarks.  

5.1 Experimental Setup  
 

While the majority of research in workload synthesis and 
statistical modeling is performed in a simulation environment, 
the accuracy and efficiency of our proposed techniques were 
tested across three read-world hardware platforms. A 
summary of the system configurations for our test platforms 
are listed in Table 1. We are limited to Intel processor 
technology in our evaluations due to compatibility with Intel’s 
VTune performance analyzer but the chosen platforms 
represent three generations of multi-threaded/multi-core 
hardware. Threads share both pipeline and caches on the 
Hyper-threading machine. On the Dual Core Pentium D 
machine, threads run on two separate cores, which only share 
the front-side bus. The Core 2 Quad machine has four 
homogeneous cores with an L2 cache shared between every 
two cores. The Hyper-Threading machine and the Pentium D 
are similar in that they are based on the same 
microarchitecture but the Core 2 machine is based on a 
completely new microarchitecture. A summary of the 
microarchitecture characteristics for each machine is shown in 
Table 2. We refer to these three machines as HT, Dual, and 
Quad in this paper. 

Table 1. Configuration of the experimental platforms 

Parameter Platform A Platform B Platform C 
Processor  Pentium 4  Pentium D Core 2 Quad 

Memory 
1024MB 
DDR400 

4096MB DDR2-
4200 

4096MB DDR2-
4200 

Storage 80GB SATA  160GB SATA  180GB SATA  
Operating 
System SuSE 10.01 SuSE 10.01 SuSE 10.2 

 
Table 2. Microarchitecture characteristics for the experimental platforms 

Parameter Pentium 4 Pentium D Core 2 Quad 

PEs 
1 Physical/2 
Virtual 2 Physical 4 Physical 

Tech 130nm 90nm 65nm 
Clock Speed 2.4GHz 2.8GHz 2.4GHz 
FSB 400MHz 800MHz 1066MHz 
Trace Cache 12k uOps 12k uOps -- 
L1I Cache -- -- 4x32kB 8-way 
L1D Cache 1x8kB  4-way 2x16kB 8-way 4x32kB 8-way 
L2 Cache 1x512kB 8-way 2x1MB 8-way 2x4MB 16-way 
ROB Size 123 126 96 
IUs ALU:3 AGU:2 ALU:3 AGU:2 ALU:3 AGU:2 
FPUs 2 2 2 

 

In this study, we used nine SPLASH-2 benchmarks [22]: 
Barnes-Hut (16k Bodies), Cholesky (TK29.0), FFT (220 data 
points), LU (1024x1024 Matrix), Ocean-Contiguous (258x258 
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Ocean Body), Ocean-Noncontiguous (258x258 Ocean Body), 
Water-Spatial (2197 Molecules), Radix (3M keys, 1024 radix) 
and Volrend (head-scaleddown4). We measured workload 
performance and execution characteristics using Intel’s VTune 
analyzer [23]. Since multi-threaded workloads exhibit non-
deterministic runtime behavior, we measured each workload 
(both original and synthetic versions) using multiple runs and 
reported average statistics. 

5.2 Accuracy  
 

To evaluate the accuracy of the proposed methodologies, 
we examine relative cross-platform speedup obtained from the 
synthetic benchmarks and compare with that reported using 
the original workloads. Note that the raw CPI is a less suitable 
metric in these evaluations for several reasons, the most 
important of which is a) the dynamic instruction count can 
change from run to run and b) the systems do not have a 
common cycle time. Because we are using multi-threaded 
programs, these timing variations can influence the thread 
interleaving and thus the execution path of the program. This 
is important because VTune performs sampling during 
sleep/idle time, spin locks, and other periods where the thread 
may not be doing useful work. If the synthetic derivation of a 

program is truly representative of the program from which it is 
derived, it should exhibit the same relative runtime 
increases/decreases when it is run on the different machines. 

Tables 3 compares cross-platform speedup measured using 
both original and synthetic workloads with four threads. The 
cross-platform speedup is calculated using the formula:  

 
( )

( ) ( )

ExecutionTime Dual
Quad Original

Speedup OriginalDual ExecutionTime Quad
Original

=  

In addition, we compute the average absolute errors using an 
individual workload to measure of all cross-platform speedup 
(e.g. cross-platform error), and using all benchmarks to 
measure the speedup of two given platforms (e.g. cross-
benchmark error). As can be seen, the maximum error 
introduced by the synthetic is 14.4%. Overall, the synthetic 
version of the studied SPLASH-2 benchmarks results in a 
cross-platform error ranging from 3.8% to 9.8% and a cross-
benchmark error with a margin of error between 6.5% and 
7.9%. This suggests that the synthesized benchmarks can be 
used to accurately evaluate various design alternatives during 
multi-core design space exploration. 

 

Table 3. Cross platform speedup  
(The cross-platform speedup is calculated using the workload’s execution time on two out of the three platforms) 

  Barnes Cholesky FFT LU Ocean-C Ocean-NC Water-SP Radix Volrend (Cross Bench- 
mark Error) 

Original 2.26 1.75 1.26 1.67 1.23 1.63 1.73 1.84 2.73  
Quad /Dual Synthetic 

(Error) 
2.04 

(-9.8%) 
1.92 

(9.7%) 
1.30

(3.3%)
1.53

(-8.6%)
1.1

(-10.3%)
1.53

(-6.1%)
1.63

(-5.6%)
1.74 

(-5.6%) 
3.05 

(11.7%) 
 

(7.9%) 
Original 2.87 1.8 1.96 3.03 2.8 3.45 2.93 2.28 3.92  

Quad /HT Synthetic 
(Error) 

2.87 
(0%) 

1.98 
(10%) 

2.12
(8.5%)

2.64
(-12.9%)

2.84
(1.3%)

2.95
(-14.4%)

2.93
(0%)

2.41 
(5.5%) 

4.14 
(5.6%) 

 
(6.5%) 

Original 1.27 1.02 1.55 1.82 2.28 2.12 1.7 1.24 1.44  

Dual /HT Synthetic 
(Error) 

1.41 
(11%) 

1.03 
(0.3%) 

1.63
(5%)

1.73
(-4.7%)

2.57
(12.9%)

1.93
(-8.8%)

1.8
(5.7%)

1.38 
(11.8%) 

1.36 
(-5.6%) 

 
(7.3%) 

 (Cross Platform 
Error)  (6.9%) (6.7%) (5.6%) (8.7%) (8.2%) (9.8%) (3.8%) (7.6%) (7.6%)  

 

Figure 5. A comparison of instruction mix between synthetic (left) and original (right) FFT 
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5.3 Efficiency 
 

Table 4. A comparison of runtime reduction ratio 
between synthetic and original multi-threaded workloads 
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HT 290 145 15 9 21 15 335 12 357
Dual 261 144 14 9 19 17 316 11 378
Quad 236 158 14 8 17 16 298 10 422

 

To evaluate the effectiveness of applying synthetic multi-
threaded workloads to multi-core performance evaluation, we 
compare the execution runtime of the synthetic programs with 
that of the original applications. The results are presented as 
runtime reduction ratio in Table 4. In general, we observe 
more than an order of magnitude decrease in execution time. 
Because the number of basic blocks emitted during synthesis 
is different for each program, the synthetic program generated 
for LU is larger than those generated for the other 
benchmarks, with respect to the original application, resulting 
in a higher fraction of runtime. Two of the largest programs, 
in terms of dynamic instruction counts, are Volrend and 
Water-SP and the synthetic programs generated for these two 
applications have two of the shortest runtimes. We expect the 
technique to easily scale with large contemporary multi-
threaded workloads and to produce synthetic programs with 
several orders of magnitude difference in runtime. 

5.4 Workload Characteristics  
 

We compare the inherent workload characteristics, 
including dynamic instruction distribution and mix, between 
original and synthetic workloads. The instruction count 
distribution between the synthetic and original programs 

correspond very well, with little deviation – less than 8% on 
average. This implies that our techniques are capable of 
capturing thread activities and appropriately scaling down 
individual thread run time. Figure 5 illustrates instruction mix 
between the original and the synthetic FFT benchmarks. As 
can be seen, the instruction mix in the synthetic program and 
the original program is similar. The differences are because 
the code generator must swap some instructions for others 
(e.g. cmov  mov) because no attempt is made to preserve 
values in the synthetic workload. 

5.5 Microarchitecture Characteristics  
 

We examined a variety of microarchitecture performance 
characteristics using 4-thread synthetic workloads. Each 
metric is compared with those of the original program. Figure 
6 shows a comparison of CPI, L1 data cache and L2 cache hit 
rates, and branch prediction accuracy on the Pentium D 
system. We also performed microarchitecture characteristics 
analysis on the HT and Core 2 Quad machines and their error 
trends are similar. The maximum CPI discrepancy is 12% 
(Ocean-cont). Our wavelet-based branch model accurately and 
cost-effectively captures branch dynamic behavior, resulting 
in an error margin less than 4%. Converging memory behavior 
between the synthetic and the original is more challenging, 
our thread-aware memory reference model overestimates L1 
data cache performance on workloads Ocean-Cont, Ocean-
Non, Barnes, LU, and FFT. The estimated L2 cache 
performance shows less discrepancy. This is because the 
original SPLASH-2 workload datasets easily fit into the 
processor L2 caches.  

We breakdown all references to the L2 cache based on the 
states of a cache block. The results on the Core 2 Quad 
platform are shown in Figure 7. A MESI based coherency 
protocol is used by the Core 2 Quad processors to maintain 
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Figure 6. A comparison of CPI, cache hit rates, and branch prediction accuracy of the synthetic and original workloads  

 

Table 5. Thread interaction comparison  
  

Barnes Cholesky FFT LU Ocean-
C 

Ocean-
N 

Water-
SP Radix Volrend 

Original 0.17% 1.27% 0.82% 0.25% 2.22% 2.62% 0.08% 0.64% 2.3% Locked Operations 
Impact Synthetic 

Error 3.5% 17.6% -3.2% 6.6% -3.2% 9.2% -11.4% -2.7% 11.7% 

Original 0.24 0.27 0.17 0.1 0.02 3.1 0.18 0.23 0.23 Modified Data 
Sharing Ratio per 1k 
Instructions 

Synthetic 
Error -3.5% 11.6% 7.7% -10% 1% -9.2% 4.4% 2.6% 5.6% 

Original 21 14 46 9 55 75 3 23 3 Data Snoop Ratio 
per 1k Instructions Synthetic 

Error -7% -4.8% -7.7% 13.2% 3.5% 6.8% -3.4% -1.6% -5.6% 
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the data consistency. The coherence protocol transitions the 
state of each L2 cache line between Modified (M), Exclusive 
(E), Shared (S), and Invalid (I) to reflect the current cache line 
status among the four cores. The MESI-based L2 access 
breakdown reveals the data sharing patterns between threads. 
If a synthetic workload faithfully captures the data sharing 
characteristics of its original counterpart, they both will 
exhibit a similar breakdown of these events. The thread-aware 
memory reference model that captures both private and shared 
data access patterns as well as the read and write ratio of each 
access pattern is responsible for these similarities. The results 
shown in Figure 7 suggest that both the original and the 
synthetic workloads stress cache coherency hardware 
similarly and will generate similar coherence traffic among 
the multiple cores. 
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Figure 7. L2 Access breakdown by MESI states 

5.6 Data Sharing and Thread Interaction  
We use the advanced multi-core performance counters 

provided by the Core 2 Quad processors to analyze the impact 
of thread interaction on both the synthetic and original 
workloads. To be more specific, we examine VTune’s 
modified data sharing ratio, locked operations impact, and 
data snoop ratio. The modified data sharing ratio measures the 
frequency of data sharing one two or more threads modify the 
data in one cache line. The locked operations impact is a 
measure of the penalty due to operations using the IA-32 
LOCK prefix. The data snoop ratio is a measure of how often 
a cache is snooped by an adjacent or external processing 
element. The results of 4-thread workloads, shown in Tables 4 
and 5, indicate that the synthetic significantly scales down the 
runtime while still faithfully preserving thread interaction. 

5.7 Limitations  
In this research, we use real hardware platforms since the 

non-deterministic execution characteristics of the multi-
threaded workloads cannot be captured using current cycle-
accurate simulators. However, the use of real hardware limits 
the number of configurations and the scope of the design 
space we can test. In our future work, we will perform 
additional studies using simulators and compare the results 
with those obtained using real hardware. Our framework is 
built around the Pthread libraries but can be extended to use 
OpenMP, UPC, MPI, or a combination of programming 
models. The Pthread model makes the SPLASH-2 suite the 
natural place to begin tests but we plan to include commercial 
and server multi-threaded workloads. 

6. Related Work 
SimPoint [13] and SMARTS [14] apply machine learning 

and statistical sampling to reduce the average number of 
instructions required for detailed, cycle-accurate simulation of 
each benchmark. SimPoint and SMARTS have been shown to 
be quite successful for single threaded applications. On-going 
efforts [15] suggest that it becomes more challenging to apply 
these mechanisms to multi-threading/multi-core scenarios 
since sampling can result in simplifications that can miss non-
deterministic executions, complex interactions between the 
multiple threads and the operating system, and parallelism 
among the multiple cores. 

Recent proposals have used statistical simulation [2, 10, 
11, 16-21] to reduce architecture simulation time. Statistical 
simulation measures characteristics during normal program 
execution, generates a synthetic trace with those 
characteristics, and then simulate the synthetic trace. The 
statistically generated synthetic trace is orders of magnitude 
smaller than the original program sequence and results in 
significantly faster simulation. For single threaded 
benchmarks, Nussbaum & Smith and Eeckhout et al. both 
showed that statistical simulation can quickly converge 
(within 10k to 100k cycles) to a performance estimate 
typically within 5% error when compared to detailed 
simulation [2, 16]. To our knowledge, Nussbaum and Smith 
built the first statistical multiprocessor model [11] and 
reported errors less than 15%, on average, for the SPLASH-2 
benchmarks. Their approach incorporated barrier, lock, and 
critical section distributions derived from their source 
programs. Their cache and branch models are limited to the 
cache and predictor configurations for which the statistics 
were collected. More recently, [19] used statistical simulation 
to model multi-programmed workloads in a CMP in an 
architecturally independent fashion. Their simulator is able to 
model the shared cache structure and the program’s time-
varying behavior. In this work, we use workload 
characterization techniques to capture fine-grained, 
microarchitecture impendent thread interaction, memory 
accesses, and branch behavior. Our framework is capable of 
generating re-compilable and portable miniature benchmarks 
that execute on real hardware and target the most complex 
commercially available x86 ISA. In addition, we report both 
accuracy and efficiency of synthetic multi-threaded workloads 
across three real-world multi-threaded/multi-core processors. 
To our knowledge, this paper presents the first work to 
accurately and automatically synthesize multi-threaded 
workloads. [24] proposed segmenting the simulator into 
separate software and hardware components with the 
hardware component managed by a FPGA. These simulators 
are capable of executing 1M to 100M cycles per second. The 
synthetic workloads can be applied to a FPGA-based 
simulation accelerator to further reduce the simulation time. 

7. Conclusions 
Multi-core design evaluation is extremely time-consuming 

because of the number of elements involved in any thorough 
design study. This exploration is likely to become even more 
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time consuming as the number of cores per die increases. The 
workload synthesis methods described in this paper for multi-
threaded programs attempts to address this problem. 
Employing techniques from statistical simulation, we propose 
to generate synchronized statistical flow graphs for multi-
threaded programs. These graphs contain not only the 
individual thread attributes but also the inter-thread 
synchronization and sharing characteristics. Using the novel 
thread-aware memory reference models and the wavelet-based 
dynamic branch models, we accurately capture and cost-
effectively preserve memory locality and branch behavior of 
the original multi-threaded workloads. Combined with 
memory and branch models, the synchronized statistical flow 
graphs can be used to automatically generate a multi-threaded 
synthetic workload comprised of the dynamic execution 
features of the original program. The synthetic program is 
emitted as a series of low-level statements embedded in C. 
When compiled, the synthetic program maintains the dynamic 
characteristics of the original program but with significantly 
reduced runtime. Because the synthetic code can be compiled 
into a new binary, it can be executed on a variety of platforms. 
Our framework is modular and we expect to extend this 
framework to encompass a variety of threading languages and 
ISAs. 
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