
Reproducible Simulation of Multi-Threaded
Workloads for Architecture Design Exploration

Cristiano Pereira†‡, Harish Patil‡, Brad Calder†$
†Computer Science and Engineering, University of California, San Diego

‡Intel Corporation $Microsoft Corporation

Abstract

As multiprocessors become mainstream, techniques to ad-
dress efficient simulation of multi-threaded workloads are
needed. Multi-threaded simulation presents a new challenge:
non-determinism across simulations for different architecture
configurations. If the execution paths between two simulation
runs of the same benchmark with the same input are too
different, the simulation results cannot be used to compare
the configurations.

In this paper we focus on a simulation technique to
efficiently collect simulation checkpoints for multi-threaded
workloads, and to compare simulation runs addressing this
non-determinism problem. We focus on user-level simulation
of multi-threaded workloads for multiprocessor architectures.
We present an approach, based on binary instrumentation,
to collect checkpoints for simulation. Our checkpoints allow
reproducible execution of the samples across different ar-
chitecture configurations by controlling the sources of non-
determinism during simulation. This results in stalls that would
not naturally occur in execution. We propose techniques that
allow us to accurately compare performance across architec-
ture configurations in the presence of these stalls.

I. INTRODUCTION

Computer architects rely heavily on cycle-accurate simula-
tion to help evaluate new design options. That and the fact that
multiprocessor designs are becoming mainstream (by putting
multiple cores on a single chip), urges the need for efficient
simulation techniques for multiprocessor design exploration.
In order to fully exploit the performance potential of these
processors, parallel applications need to be studied. As a result,
multi-threaded benchmarks, where many threads of execution
share an address space, are very important. These applications
can achieve significant speed-ups when running on processors
with multiple cores. One example of such benchmarks is
SpecOMP [2].

In addition to large instruction counts, benchmarks for future
multiprocessors face another challenge when simulated: non-
determinism. The non-determinism comes from the fact that
threads access shared-memory locations in different order
across simulations of different architecture configurations. For
example, the order in which locks are acquired by threads
can be different across two runs. Also, the number of cycles

and instructions spent spinning for a lock can be different. As
a result, the execution paths across two simulations are not
guaranteed to be the same. If the variation in the execution
paths is significant, two simulation runs cannot be compared
directly, because the amount and type of work performed
differs across executions. This non-determinism problem has
been pointed out in previous research [1], [5].

In this paper, we present a technique to provide reproducible
behavior of multi-threaded programs when simulated under
different architecture configurations. Our technique focuses on
user-level simulation of multi-threaded programs. We guaran-
tee the same execution paths by removing the sources of non-
determinism during simulation. Our prior work [9] guarantees
deterministic simulation of single and multi-threaded programs
on uniprocessors. We build upon it and we extend the tech-
nique to guarantee reproducible behavior on multiprocessors
as well. Our technique enforces the same order of shared-
memory accesses across simulations by introducing artificial
stalls. We present an approach to account and deal with these
artificial stalls, so that we can provide meaningful comparison
across simulation runs for design space exploration. This paper
makes the following contributions:

• We present a mechanism to create deterministic sim-
ulation checkpoints of user-level code for large multi-
threaded applications. The mechanism is based on Pin [6],
allowing one to easily capture the execution of complex
workloads in their native execution environments. Pin
based checkpointing does not require the usually time-
consuming task of configuring the application to run on
a whole-system simulator (e.g. license checks, special
device-drivers, kernel dependencies, large storage require-
ments or elaborate installation procedures).

• We describe the implementation of a deterministic sim-
ulator, which consumes the checkpoints, and provides
100% reproducible behavior (execution of the same con-
trol paths) across different architecture configurations.

• Enforcing reproducibility during multi-threaded simula-
tion introduces artificial stalls in the results. We provide
techniques to account for the stalls, allowing comparison
of two simulation runs for design space exploration.

173978-1-4244-2778-9/08/$25.00 ©2008 IEEE

II. CHECKPOINTS FOR REPRODUCIBLE MULTI-THREADED

EXECUTION

The technique we use to collect user-level checkpoints for
reproducible execution of multi-threaded workloads is based
on our previous work [9], which automatically logs system-
effects for simulation. Our previous technique only guar-
antees reproducible simulation for multi-threaded programs
running on uniprocessors. In this section we briefly review
the technique and also describe the extensions we made to
handle reproducible simulation of multi-threaded programs on
multiprocessors as well.

A. Checkpoints for Reproducible Simulation of Uniprocessors

The previous approach for creating checkpoints for user-
level simulation creates log files that contain initial register
state, including the program counter, and the memory image
(code and data) values accessed by the program during ex-
ecution. It also contains all system-effects to those registers
and memory states. The checkpoints can be for either the full
execution of the program or for just samples of execution.
The samples could be hand-picked, or chosen using tools like
SimPoint [12].

Our previous approach uses a Pin[6] tool called pinSEL [9],
which is used to collect the checkpoints. The pinSEL tool
dynamically instruments the program execution using appli-
cation programming interfaces (APIs) provided by Pin. Those
APIs allow one to instrument classes of instructions, specific
functions, system calls and interrupt events. It allows the
registration of calls to analysis routines, which are invoked
when the instrumentation points specified are reached. After
the analysis routines are executed, the program execution
continues until the next instrumentation point is reached.

pinSEL instruments every load and store instruction during
the execution of the program to keep track of the user-level
memory state. In addition, it also instruments every basic block
during execution to keep track of the code pages touched and
to copy them to the checkpoints. The tool also instruments
system calls and interrupts in order to capture the changes
in register state caused by them. A pinSEL checkpoint for a
program’s execution is composed of the following log files:

Code update log - This file contains initial memory values
for the code regions touched during execution.

Data update log - This file contains initial memory values
for the data regions and the system effect changes to it.

Register update log - This file contains the initial architec-
tural register values and the system effects changes to them.

Each entry in the log files contains a timestamp that tells
when to restore that entry during simulation. A timestamp
can be either a committed memory count or an instruction
count. The memory count is the number of dynamic load or
store macro (x86) instructions executed since the start of the
logging. The instruction count is the dynamic count of all
macro instructions executed since the beginning of logging.

In order to reproduce the execution of a multi-threaded
execution in an uniprocessor, one needs to reproduce the
exact thread interleavings as observed during logging. In

the prior approach [9], we created a Context Switch Log
which contained entries representing the context switches that
happened during execution. Since there is only one thread
executing at a time in a uniprocessor, repeating the context
switching reproduces the same interleavings of shared-memory
dependencies. In addition, we also created the previously
described log files for each thread. On multiprocessors though,
recording the inter-leavings of threads is not sufficient to
reproduce the execution. This is because threads are run in
parallel in different processors and the execution depends
on the order in which shared-memory locations are updated.
Hence we need an approach to record the shared-memory
dependencies across threads.

B. Logging Shared-Memory Dependencies for Multiproces-
sors

In this section, we explain our approach to provide multi-
threaded simulation on multiprocessors, thus improving our
prior technique. To do this we need to record shared-memory
dependencies across threads, and obey them during simulation.
This means that the same execution paths and shared-memory
dependencies seen during logging will be simulated from one
simulation to the next.

For logging shared-memory dependencies, there are two
sub-problems that we need to solve. The first problem is
related to detecting these shared-memory dependencies during
logging. The second problem is related to efficiently logging
this information to minimize the log size. Previous hardware
proposals [17], [8] observed that shared-memory dependen-
cies can be detected by just looking at the cache coherence
messages in a multiprocessor system. They used the standard
Netzer transitive reduction algorithm [10] to reduce the log
size. Our approach for logging shared-memory dependencies
is similar to the hardware proposal [17], but it is implemented
completely in software. We also implement the Netzer tran-
sitivity reduction algorithm [10] to minimize log sizes. The
Netzer algorithm works by exploiting the transitive property
in a system that assumes sequential consistency. In Figure 1,
for example, there is a read-after-write (RAW) dependency be-
tween StoreB on thread 1 and LoadB on thread 2. However,
this dependency does not need to be logged, because the write-
after-read (WAR) dependency between LoadA on thread 1 and
StoreA on thread 2 transitively implies it. In this paper, the
instructions involved in the shared-memory dependencies are
referred to as source and destination instructions. For example,
LoadA in the WAR dependency is the source and StoreA the
destination. Similarly, StoreB is the source instruction and
LoadB the destination instruction. We later discuss how we
collect a sequentially consistent memory order while logging
shared-memory dependencies. This does not mean that we can
only simulate sequentially consistent memory models, as we
explain in section III.

For detecting shared-memory dependencies during logging,
we use a global data structure that emulates a cache coherence
directory structure. This data structure is a hash table indexed
by the effective address of a memory operation. The table is re-
ferred to as a directory hereafter. Each entry represents a range

174

2:Load A

1:Store B

Thread 1 Thread 2

1:Store A

2:Load B

Fig. 1. Example of transitive optimization. Two dependencies are illustrated:
a read-after-write (RAW) between LoadB in thread 2 and StoreB in thread
1 and a write-after-read (WAR) between StoreA in thread 2 and LoadA in
thread 1. The dotted arrow represents an implied dependency and the solid
arrow a recorded dependency. We define LoadA in the WAR dependency as
the source of the dependency and StoreA the destination.

of addresses and contains the thread identifier (ID) of the last
thread to write to that address range, along with the timestamp
of the memory operation that wrote to the address. In addition,
each entry also contains a vector of timestamps indicating the
last time each thread accessed that address range. These times-
tamps are used to create a log entry that represents the depen-
dency between two instructions across the threads. The times-
tamps are also used to implement the Netzer optimization. The
shared-memory dependencies are logged in a Race Log, main-
tained per thread, which has entries in the following format:
<local_mcount remote_tid remote_mcount>.
local_mcount is the memory count of the depen-

dent (local) thread, remote_tid is the thread ID of the
remote thread upon which the local thread depends on,
and remote_mcount is the memory count of the re-
mote thread. The local thread cannot execute its mem-
ory operation local_mcount until the remote thread
identified by remote_tid executes its memory operation
remote_mcount, because there is a dependency between
the two. For every load and store instruction, the directory
entry corresponding to the effective address of the memory
instruction is accessed. The entry is accessed to log shared-
memory dependencies and also to update its fields. For the
example in Figure 1, thread 2 would log a Race Log entry
as follows: < 1, 1, 2 >. This indicates that thread 2 cannot
execute memory instruction 1 until thread 1 finishes memory
instruction 2.

Before logging each dependency, we check whether there
is another dependency between the two threads which implies
the current dependency. If that is the case, we do not log
it. In Figure 1, for example, thread 2 does not log the
RAW dependency. Since the directory is shared across threads
each entry is protected by a lock. This guarantees consistent
state of the directory entries as well as gives us a valid
sequentially consistent order for the shared-memory updates.
This is because our implementation acquires and releases the
directory lock for the entry accessed around the execution of
every memory operation in the application. As a result, when
the tool sees that a memory operation to a shared location from
thread A happened after a memory operation from thread B
for the same location, it must be the same sequence observed
by the processor.

By adding the Race Logs, our modified logging tool can

generate checkpoints that have enough information to repro-
duce the execution of multi-threaded workloads on a multi-
processor architecture, even if the architecture configuration
changes. In the next section we discuss the changes introduced
in the simulator to implement deterministic simulation.

C. Memory Model and Deterministic Simulation

Our approach for deterministic user-level simulation is
execution-driven, but it is constrained by the logs. This allows
simulation of relaxed memory models in which memory
operations are allowed to go out of order. However, the
access order for shared-memory locations must follow the
order dictated by the logs, which provides determinism. Given
this restriction, using deterministic simulation for performance
evaluation of different memory consistent models will not
allow those dependencies to change during design exploration.
Those dependencies are resolved in the order recorded. Nev-
ertheless, we can track when this occurs and account for it in
the error estimate for our results.

D. Picking Samples for Simulation

Our logging and simulation approach allows selecting the
regions to checkpoint manually, or using techniques such as
systematic sampling [16], [15] or Simpoint [12], [11]. The
focus of this paper is not on picking samples, but to show that
the samples can be simulated deterministically for design space
exploration. Thus for this work we pick samples of execution
uniformly.

III. DETERMINISTIC SIMULATION

In this section we describe the changes we made to the
simulator we used in order to consume our user-level check-
points. This allows us to reproduce the execution of workloads
across different architecture configurations guaranteeing the
same execution paths for each thread.

A. Deterministic Simulation Implementation

We modified Asim [4] to consume our checkpoints. Asim
is a framework to create and maintain architecture simulators.
Asim defines a functional model and a performance model.
The functional model is implemented as an instruction Feeder.
The performance model dictates the execution by asking the
Feeder to supply instructions. This allows a performance
model to use different Feeders and vice-versa. We imple-
mented a Feeder which supplies instructions and memory
values from our checkpoints. Our Feeder supplies register
values and memory effects for system calls by restoring
them from the checkpoints during simulation. In addition, our
Feeder dictates the order in which shared-memory accesses
are performed.

175

1) Enforcing Shared-Memory Dependencies: Our check-
points for simulation of multi-threaded workloads contain a
pre-determined order in which shared memory is accessed,
which is the order that was recorded during the collection of
the logs.

During simulation, the Feeder needs to tell the performance
model that certain instructions must wait until their shared-
memory dependencies with other threads are resolved. A de-
pendency is resolved when the performance model completes
the memory operation. For the models we use, where a Pro-
cessor Consistency memory model is implemented, the reads
are completed at commit time and the writes are completed
when the memory interconnection network makes the value
visible to other processors. In the performance models where
our deterministic simulation approach was implemented, when
a memory operation completes the Feeder is notified so that it
can update its own memory image. At this point, we also note
whether shared-memory dependencies have been satisfied or
not.

The shared-memory dependencies recorded in the check-
points are represented using counts of memory operations
committed by the program. The performance models we
used are timing-directed simulators [7]. This means that the
performance model dictates the execution of the functional
model, implemented in the Feeder, and the latter does not
know that a control path is speculative until the actual branch
instruction it is dependent on is resolved by the performance
model.

When an instruction is ready to be dispatched for execution
because all its operand dependencies are satisfied and the
functional units are available, we check whether this instruc-
tions has a logged cross-thread dependency. If it does, the
instruction is not allowed to dispatch until the cross-thread
dependency is resolved. This results in processor stalls during
the execution, which hereafter we refer to as synchronization
stalls. These stalls would not naturally occur in the execution
of the program. They only exist in our simulation to guarantee
determinism across executions in different architecture config-
urations. Note that synchronization stalls can also be generated
when executing a wrong path. This is not a problem because
the cycles spent synchronizing would be spent executing the
wrong path anyway until the branch is resolved.

2) Using Netzer Optimized Race Logs: In Section II we
mentioned that we use Netzer [10] optimization to log only
the necessary dependencies to enforce thread ordering in a se-
quentially consistent model. In our experiments we found that
the Netzer optimization reduces the race log size by two orders
of magnitude. Using the optimization requires that all the
memory instructions before the source of the dependency com-
plete before the memory instruction which is the source of the
dependence completes. Similarly, no memory instruction after
the dependency-destination memory instruction is allowed to
execute before it completed. In Figure 1, LoadA is the source
of the WAR dependency and StoreA the destination. As a
result, during simulation, no memory instructions after StoreA
can execute before all memory instructions before LoadA have
completed their memory operations.

We would like to benefit from the reduction in number of
dependencies but still allow as much out-of-order execution
of memory operations as the underlying memory consistency
model implemented allows. This would minimize the amount
of synchronization stalls when using deterministic simulation.
Our goal is then to be able to determine whether there are any
potential conflicts between the memory operations “before the
dependency source” and “after the dependency destination”
instructions. We do that by associating a bloom filter with each
dependency logged. The bloom filter is a hash table indexed
by the effective address of the memory instructions after the
dependency destination. If the instruction has a dependency
with any instruction before the dependency source, the bloom
filter entry will have a one. Otherwise it will have a zero.

Since instructions must be committed in order, the bloom
filter only needs to contain the effective addresses of n
instructions after the dependency destination, where n is the
maximum number of instructions that can be in flight during
the execution. The effective addresses of these instructions
need to be checked against the effective addresses of the
instructions before the dependency source. An alternative to
using the bloom filter would be to log all the dependencies
without using Netzer optimization. This would result in a
two orders of magnitude increase in number of dependencies
recorded in the Race Log file.

During simulation, when a memory instruction younger than
the instruction whose dependency has not been satisfied yet
tries to execute, it checks the bloom filter for that dependency.
If the bloom filter tells it that it is safe to execute, it does not
need to stall. Otherwise it has to stall because there is a po-
tential dependency with an instruction before the dependency
source that may not have executed yet.

3) System Calls: Our approach is targeted for user-level
simulation. As a consequence, no operating system code is
simulated while executing from our checkpoints. Instead the
system call side effects are restored from our log files. This
works well with single-threaded programs. However, for multi-
threaded programs, when system calls executed during logging
are not executed during simulation, the relative progress of
threads with respect to one another is changed. Consequently
a thread “jumps” ahead of the other threads during simulation,
differently from what was observed when collecting the logs.
To deal with this problem, whenever a thread executes a system
call, our checkpointing tool also logs the instruction count of
all threads being executed before and after the system call.
This tells us the state of the other threads before and after the
system calls and allows us to measure how much progress the
other threads made while executing the system code.

During simulation, a system call instruction is not actually
executed, it is just skipped. Its register and memory side
effects are restored nonetheless, to guarantee correct execution.
To reproduce the behavior that was observed during logging
for a system call, we force the thread to synchronize with
all the other threads before and after the system call. This
allows us to model the time spent on the system calls during
simulation and maintain the threads synchronized with respect
to the execution of the system calls, according to the logged

176

execution. We then deal with the system call stalls during our
performance analysis, as described in the next section.

IV. COMPARING SAMPLES ACROSS ARCHITECTURE

CONFIGURATIONS

The end goal of our simulation approach is to allow de-
signers to evaluate the performance of a given architecture
enhancement or feature. Hence throughout this section, we
assume that a designer is comparing a baseline configuration
with an experimental configuration. The designer wants to
evaluate how fast or how slow the experimental configuration
is relative to the baseline configuration.

In the previous sections, we explained how we guarantee
the same execution paths and therefore that the same amount
and type of work is performed across both configurations,
thus allowing one run in the baseline to be directly compared
to another run in the experimental configuration. One conse-
quence of the reproducibility of our approach is that we need
to introduce synchronization stalls, which would not occur in
the execution of the program. This section addresses how we
take these stalls into account, and how we calculate errors in
the performance estimate in the presence of the stalls. This
involves comparing simulation samples to determine which
architecture configuration performs better. In section VI, we
present quantitative results on how our technique works for
the design options we tested.

A. Checkpointed Behavior and Baseline Configuration

The program behavior simulated is for a valid execution of
the benchmark on the processor where the checkpoints were
collected. As a result, the relative progress of threads when col-
lecting the checkpoints is potentially different from the relative
progress observed during the simulation. This is because these
two machines can be different. This results in synchronization
stalls even for the baseline configuration. We later show that
many of these stalls are commonly present in both the baseline
and the experimental configuration. This means they are biased
in the same direction for both configurations and therefore
should not affect the relative performance comparison.

B. Classifying Synchronization Stalls

The determinism comes at the cost of synchronization stalls
added during simulation. We keep track of the synchronization
stalls introduced during the simulation and divide them up in
four categories:

True-Dependencies Stalls - These are stalls needed to
enforce the order of cross-thread RAW dependencies.

False-Dependencies Stalls - These are needed to enforce
the order of cross-thread WAR/WAW dependencies.

Before-System-Call Stalls - These stalls are introduced
to make sure that whenever a thread is about to execute
the instruction to invoke a system call, the other threads are
approximately executing the same instructions as they were
when the execution was recorded.

After-System-Call Stalls - These stalls are introduced to
model the time executing a system call. As explained in

Section III-A3, these are needed to maintain the threads syn-
chronized with respect to the checkpoints, since they model the
time spent executing the system calls in terms of instructions
executed by the other threads.

Synchronization stalls are introduced to ensure determinism.
These introduce additional cycles during the simulation of a
thread, which we need to track to determine an estimated error
for the performance comparisons.

When an instruction is stalled due to a shared-memory
dependency, another instruction is allowed to be dispatched
after the stalled instruction if it has no unresolved operand
dependencies and it satisfies one of the following: 1) it is older
than the instruction waiting for the dependency to be satisfied;
2) it is not a memory instruction; 3) it is a memory instruction
younger than the instruction waiting for the shared-memory
dependency but it has no potential cross-thread dependencies
according to the bloom filter (associated with the youngest
instruction stalling due to cross-thread dependencies). This
means that while an instruction is stalling due to a cross-
thread dependency, other instructions can make progress. As
a result, the pipeline is not stalled completely. Of course, if
the synchronization stalls are long, eventually the pipeline will
stall because internal processor queues (e.g. ROB) will fill up,
preventing other instructions from making progress, or because
the instruction is in the critical path of execution, causing other
instructions to wait for it in order to dispatch.

For measuring if an instruction that is stalled due to cross-
thread dependencies is in the critical path, we used a technique
similar to [14]. The key observation is that an instruction is
likely to be in the critical path if it reaches the bottom of the
instruction queue before it is dispatched. In our deterministic
simulator, whenever a thread is stalling due to a cross-thread
dependency, we keep track of the number of cycles where
instructions that are younger than the instruction stalling are
allowed to dispatch. We also keep track of the number of
cycles where instructions are not allowed to dispatch at all and
the oldest instruction in the queue is the one stalling due to a
cross-thread dependency. When the latter is true, it means that
the pipeline is completely stalled due to the synchronization
stalls of a shared-memory dependency. By doing this, we can
keep track of the synchronization stalls which result in whole
pipeline stalls.

C. Matching Synchronization Stalls Across Configurations

When simulating a given checkpoint sample on two different
configurations, the relative progress across threads can lead to
different behavior of these threads on each configuration. The
difference in behavior results in threads reaching a shared-
memory update in different order than it happened in the
recorded execution. This will lead to a different number of
synchronization stalls for both configurations. As suggested
earlier, some of these stalls are common across both config-
urations. This is because those stalls are present due to the
difference between the behavior captured and the behavior
being simulated. This difference in behavior can introduce
stalls in the simulation, but the stalls will be common for

177

both configurations. The non-common synchronization stalls
are because of differences in the configuration. Those are
resulting from variation in progress of threads with respect
to one another, due to changes in the architecture. These need
to be tracked in order to give a performance estimate for the
simulation. Consequently we need to identify the common
stalls across two runs, which will allow us to figure out the
stalls resulting from changes in the simulated configurations.

The mechanism to identify stalls which are common across
configurations works as follows. We first simulate the two
configurations. Each simulation run will create a file with all
the dependencies which generated synchronization stalls. We
refer to this file as a stall trace and each entry in the file is
called a synchronization event. A synchronization event is an
instruction which generates synchronization stalls presented
in section IV-B. For each synchronization event we record
the thread ID and the instruction count for the instruction that
generated the event, along with the number of stalls generated.
The thread ID and instruction counts uniquely identifies the
stall event. Because the behavior of the threads is deterministic
across the simulation runs, these synchronization events can
be identified across runs (by the thread ID and instruction
count). Hence we can match the synchronization events across
the runs and calculate the number of stalls which are common
across them. These are stalls originating from the same syn-
chronization events. For example, if a dependency generated
50 synchronization stall cycles in one run, but 15 in the other,
for the same event, 15 of those cycles are common. The other
35 cycles are only present in one run, due to difference in
thread progress. We then calculate the difference in stalls for
each run, and record this information in the stall traces. This
difference is the total number of common synchronization
stalls across all the runs subtracted from the total number of
synchronization stalls for each run. This difference is later used
to estimate the error when comparing simulations. The error
is a result of the number of synchronization stalls introduced
which are not common across the runs. This tells us how much
the program was slowed down by the synchronization stalls in
one simulated configuration with respect to the other simulated
configuration.

D. Calculating Sample Speed-ups

Once we have calculated the difference in synchronization
stalls across the simulated runs, we can then use it to estimate
the error in performance resulting from the deterministic
simulation. The metric to evaluate the performance difference
between two samples used in this work is the weighted-
speedup [13]. The formula to compute the speed-up is given
in equation 1.

ws =
1

#threads

∑

i∈threads

IPCexpi

IPCbasei

(1)

This formula equalizes the IPCs on a per-thread basis by
dividing each thread’s IPC for the experimental configuration
by its IPC in the baseline configuration. We use this metric

IP
C

w
-s

p
ee

d
-u

p

1

S1 S2 S3

(a) (b)

IPC without any
sync. stalls

IPC with uncommon
sync. stalls

IPC with all
sync. stalls

baseline experiment

Fig. 2. (a) - IPCs with all synchronization stalls, with only common stalls
and without any stall; (b) - Weighted Speed-up Calculation

because threads run at different rates of progress when run-
ning on different configurations. Consequently the instruction
counts for each thread are different across the runs when
simulating the samples. This happens because the samples
are terminated when any of the threads terminates. Using the
weighted-speedup helps mitigating this effect.

Deterministic simulation increases the number of simulated
cycles due to the synchronization stalls introduced. The in-
crease in cycles is therefore a quantitative measure of error.
The error in performance estimation between two runs of
deterministic simulation is proportional to the difference in
synchronization stall cycles between the runs of the same
sample in different configurations. The difference comes from
changes in thread’s progress in each configuration. The differ-
ence is the stalls not matched across the runs as explained in
section IV-C. This allows us to calculate a range of IPCs that
one can expect from simulating the sample. One IPC includes
the synchronization stalls introduced that are not common
across the runs and the other does not.

The method to compute speed-up is as follows. First we run
the simulations for both the baseline and the alternative config-
urations. Then we match the common stalls from the two runs,
as described in section IV-C, on a per thread basis. The goal
of this step is to find out the common stalls. The non-common
stalls in each configuration will be used to compute two IPCs
for each thread. One IPC including the synchronization stalls
which are uncommon across the configurations, referred to as
IPCUC−STALLS, and one not including synchronization stalls
at all, referred to as IPCNO−STALLS. Figure 2-(a) shows the
hypothetical IPCs for the baseline and the experiment. There
are three IPCs shown in the figure for each configuration. The
lowest IPC shows the IPC with all the synchronization stalls.
This is before we factor out the stalls which are common
across the configurations. Once the common stalls are sub-
tracted, we have an IPC with the uncommon synchronization
stalls. This is what we call IPCUC−STALLS. The third IPC,
the highest, includes no synchronization stalls at all. This is
what we refer to as IPCNO−STALLS.

With both IPCUC−STALLS and IPCNO−STALLS for each
thread, for the baseline and the experimental configuration,
we then can compute two weighted speed-ups, ws low and
ws high, as follows:

178

Core 2.4GHz, 4-issue, 128 ROB
entries

Per Core Cache Hierarchy Separate Instruction and
Data caches 32KB, 8-way,
64-byte line size
Unified second level: 256KB,
8-way, 64-byte line size

TABLE I
BASELINE SIMULATOR CONFIGURATION

ws low =
1

#threads

∑

i∈threads

IPCUC−STALLS
expi

IPCNO−STALLS
basei

(2)

ws high =
1

#threads

∑

i∈threads

IPCNO−STALLS
expi

IPCUC−STALLS
basei

(3)

These two weighted speed-up calculations give a range of
speed-ups expected from the architectural experiment, consid-
ering the errors measured as the amount of synchronization
stalls which are not common across the two runs. If this range
is completely below or completely above a speed-up of one,
we can safely conclude that the experiment is either slower or
faster than the baseline respectively. If the range of speed-ups
contains one within its limits, then we cannot safely conclude
if the experimental configuration is better than the baseline.
These three situations are illustrated in Figure 2-(b), by the
bars S1,S2,S3. For the first bar S1 we can safely conclude
the experiment is slower than the baseline, the second bar
S2 is inconclusive, and for the third bar S3, the experiment
is faster than the baseline. From equations 2 and 3, it is also
clear that the amount of stalls not common across the runs will
determine the range of speed-ups, hence the need to compute
it precisely. Section VI presents quantitative results on how
the technique works for the benchmarks we studied.

V. METHODOLOGY

For this paper we used multi-threaded programs from the
SpecOMP [2] benchmarks and we experimented with the
proposed simulation methodology. We used 4-threaded runs
of these benchmarks. The checkpoints were collected on a
machine running with 4 Intel R©XeonTM64-bits CPUs operating
at 3.66GHz and running the Linux operating system.

For the results presented in section VI we used Asim [4]
simulating a hypothetical 4-core 64-bits x86 processor. The
baseline configuration relevant for this work is presented in
Table I. In this paper, the number of threads is the same as
the number of cores simulated. Hence we map each thread to
one core. During simulation, a sample is terminated when the
first thread in the sample executes all of its instructions for
that sample.

In this work we did not intend to choose representative sam-
ples for simulation as we discuss in section II-D. We collected
samples uniformly throughout the execution of each program.
We chose to collect 10 samples for each benchmark, each with
approximately 280 million instructions on average. The size

Configuration name Parameters
baseline L1 Instruction and Data caches: 32KB,

8-way, 64-bytes line size
L2 Unified cache: 256KB, 8-way,
64-bytes line size

cfg1 L1 Instruction and Data caches: 16KB,
8-way, 64-bytes line size
L2 Unified cache: 128KB, 8-way,
64-bytes line size

cfg2 L1 Instruction and Data caches: 64KB,
8-way, 64-bytes line size
L2 Unified cache: 512KB, 8-way,
64-bytes line size

TABLE II
EXPERIMENTAL CONFIGURATIONS

of the checkpoint log files was on average 14KB per million
instructions. On average the collection of checkpoints was 27
times slower than the native execution of the benchmarks.

We ran the benchmarks for different configurations pre-
sented in section VI. We then computed the weighted speed-
ups as presented in section IV-D across the different runs. This
gave us a range of possible speed-ups that we discuss in the
next section.

VI. EVALUATION

We evaluated our technique for deterministic simulation
using the benchmarks mentioned in section V. In this section
we present the results for the architectural configurations we
simulated. Our experiments change the cache size of the cores
according table II.

A. Estimating the speed-ups across simulation runs

The first set of results we present is the number of syn-
chronization stalls present in the baseline configuration for
the benchmarks we simulated. These are resultant from the
differences in behavior between the run captured with our tool
and the run observed during simulation. Figure 3 shows the
results for the SpecOMP benchmarks. The figure breaks down
the synchronization stalls in the four categories we described
in section IV. For SpecOMP, on average, 10.8% of the cycles
spent during simulation of the samples are due synchronization
stalls. From these, 6.5% of the cycles were due to system calls,
and the 4.3% for the other shared-memory synchronization
stalls. Note that the approach presented in the paper eliminates
many of these stalls as it will be discussed later in this section.
We believe this is the most important contribution of this
paper. By discovering the stalls which are common across
configurations we are able to eliminate many of these stalls.

The synchronization stalls presented in figure 3 are intrinsic
to the checkpoints, because of the reasons discussed in section
IV-A. We next experimented with simulation runs for two
different configurations. Our objective was to examine how
many synchronization stalls are common across configurations
and, from that, to determine the difference in stalls due to
changes in the configurations simulated.

179

0%

5%

10%

15%

20%

 ammp
 applu

 apsi

 equake
 fm

a3d
 galgel

 wupwise

average

%
 o

f
sy

n
ch

ro
n

iz
at

io
n

 c
yc

le
s

b
re

ak
d

o
w

n

true dep false dep before system call after system call

Fig. 3. Percentage of synchronization stall for baseline configuration broken down in categories: (a) true-dependencies (RAW); (b) false-dependencies
(WAR/WAW); (c) Before-System-Call; (d) After-System-Call

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

 a
m

m
p-

b
as

e

 a
m

m
p-

cf
g

1

 a
p

p
lu

-b
as

e

 a
pp

lu
-c

fg
1

 a
p

si
-b

as
e

 a
p

si
-c

fg
1

 e
q

u
ak

e-
b

as
e

 e
q

u
ak

e-
cf

g
1

 fm
a3

d
-b

as
e

 fm
a3

d
-c

fg
1

 g
al

g
el

-b
as

e

 g
al

g
el

-c
fg

1

 w
u

p
w

is
e-

b
as

e

 w
u

p
w

is
e-

cf
g

1

av
er

ag
e-

b
as

e

av
er

ag
e-

cf
g

1

%
 s

ta
lls

 n
o

t
co

m
m

o
n

 b
et

w
ee

n

b
as

el
in

e
an

d
 c

fg
1

true dep false dep before system call after system call1.36%

2%

Fig. 4. Percentage of synchronization stalls not common across the baseline and cfg1, w.r.t. the total number of cycles simulated

We simulated the configurations presented in table II. Figure
4 shows the percentage of cycles relative to the total number of
cycles simulated, which are not common across the runs of the
baseline and cfg1. For ammp, for instance, just under 1% of the
execution cycles for the baseline were spent with synchroniza-
tion stalls that are not common with the synchronization stalls
introduced when running cfg1. Conversely, 1.36% of the cycles
spent with synchronization stalls, when running cfg1, are not
common with the baseline. fma3d had 2% of its cycles, when
running configuration cfg1, not common with the baseline. For
the other SpecOMP programs, these percentages are smaller.

The differences in synchronization stalls presented in fig-
ure 4 should correlate directly with the errors in speed-up
predictions across the two configurations. This is because
those differences are used to compute a range of IPCs for
each thread and consequently the range of weighted speed-
ups expected. Figure 5 shows the weighted speed-up compu-
tations between the baseline configuration and configurations
cfg1 and cfg2. The figure shows sets of four bars. The first
two bars in each set (cfg1-nomatch and cfg2-nomatch) show
the weighted speedup results when using all synchronization
stalls (common and not-common) in the computation. This
represents a scheme similar to the approach proposed by

prior work [5], where stalls are not matched across simulation
runs. All the synchronization stalls are used when computing
the range of speed-ups. In their work presented in [5], the
error bars are not as high as shown in Figure 5 because the
checkpoints were collected using the simulator, configured to
model the baseline architecture. Note that collecting the check-
points using a detailed simulator is not a practical approach,
because the instruction count of multi-threaded applications for
modern processors are in the order of trillions of instructions
(e.g SpecOMP). The second two bars (cfg1-match and cfg2-
match) show the weighted speed-ups when using the algorithm
described in section IV-D, which matches the common stalls
and uses only the difference in stalls to compute the estimates.
ammp is the benchmark with the highest range of speed-
up estimations. Between the baseline and cfg1, the speed-up
ranges from 0.949 to 0.972. Between baseline and cfg2, the
speed-up range is between 1.07 and 1.092. This difference is
smaller for the other benchmarks, some of which are invisible
in the figure. As expected, the error in the weighted speed-up
calculation very closely tracks the percentages of synchroniza-
tion stall cycles not common across the configurations. It is
clear from the figure that not matching the stalls across the
runs leads to very large speed-up range estimations, which do

180

not give the designer conclusive information. This emphasizes
the importance of matching the common stalls across the
configuration runs which is a contribution of our work.

B. Limitations of Deterministic Simulation

This paper indicates that deterministic simulation can be
used for evaluating design changes for multi-threaded work-
loads. We have shown for different cache configurations that
we can determine a range of speed-ups expected from the
design change. One limitation of deterministic simulation is
that the order in which shared-memory updates are performed
is fixed across simulations. As a result, deterministic simula-
tion may not be as applicable when evaluating design changes
that require shared-memory updates to be resolved differently.
One example is comparing the performance of two differ-
ent memory models. Nevertheless, deterministic simulation
is useful for evaluating things such as cache configurations,
branch predictions and changes in pipeline width. In addition,
the approach is also useful for applications with infrequent
interactions through shared memory, such as many multi-
threaded Windows applications. For applications with a finer
level of sharing, the technique is also applicable but there is
a potential for more artificial stalls, which can result in wider
ranges of speedup estimations. Finally, even though the same
behavior is enforced, differences in performance configuration
are accounted by tracking the artificial stalls and using them
to compute speedup errors/ranges.

Another limitation of deterministic simulation is that for
some design options, if the amount of synchronization stalls
not common across the runs is too high, the results given by
the simulation may not be conclusive. This happens when
the range of speed-ups includes one within its limits (case
S2 in Figure 2-(b)), in which case one is not sure whether
the experimental architectural is slower or faster than the
baseline. If this happens, one can resort to methods to break
down the samples around execution points where the number
of synchronization stalls is too high. This would result in
smaller samples without large synchronization stalls, which
are resultant from large deviations in thread behavior. Another
alternative is to collect more samples to verify if the same
results hold across all the samples.

Finally, our approach only simulates the user-level code
and the shared libraries. Hence our approach is more suitable
for applications which do not spend significant time in the
OS code. Examples are scientific applications such as HPC
applications, which spends most of the execution on user-code.
Microsoft SQL application also spends over 90% of the time
executing user-level code (they have little dependencies on the
kernel for performance reasons). The SpecOMP applications
we examined also do spend significant time executing user-
level and shared library code.

VII. RELATED WORK

This section discusses prior work related to handling non-
determinism when simulating multi-threaded workloads on
multiprocessors and sampling of multi-threaded workloads.

A. Dealing with Non-Determinism

Non-determinism in the execution of multi-threaded work-
load has been recognized in prior research work.
Alameldeen et al [1] shows that for multi-threaded workloads,
in particular server workloads, non-determinism can affect
simulation results significantly, because the execution paths
of the program and OS scheduling can change the behavior
of the runs dramatically. They propose the use of statistical
techniques to handle the problem. In their approach one
simulates a program on the same configuration multiple times,
inserting random perturbations to induce different behavior.
This allow them to estimate the average behavior in that
configuration within a confidence level. The same thing is done
for a second configuration. After that they can conclude which
configuration is better using statistical techniques. The cost of
their technique is the requirement to run the program multiple
times for the same configuration. Very small configuration
changes can results in a large number of runs, which can be
impractical. Our technique proposes running the program only
once for each configuration and comparing the runs directly.

Lepak et al [5] proposed deterministic simulation for full-
system simulators. Their work presented the first implementa-
tion of a full-system deterministic simulator which introduced
artificial stalls to ensure determinism. Our work differs from
theirs in many aspects. First, we propose a binary instrumenta-
tion approach for efficient collection of the checkpoints. This
makes it practical to collect checkpoints for large applications
such as SpecOMP programs. Second, we propose user-level
deterministic simulation. To be able to use this for multi-
threaded simulation, we had to track synchronization stalls
before and after system calls and include them in our error
model. The most significant improvement we made is the
tracking and matching of the common stalls across simulation
runs precisely, and only using the stalls that are different
between the configurations towards the performance estimates.
This significantly reduced our error bars over the prior results
and allowed us to distinguish smaller speedups.

B. Simulation Sampling of Multi-Threaded Workloads

In this section we briefly discuss techniques used for select-
ing simulation regions of multi-threaded programs and how
our technique can be used with them. Wenisch et al [15]
proposed the use of statistical sampling for server throughput
multi-threaded applications, along with a technique to create
checkpoints samples which store warm-up data for the micro-
architecture. Ekman et al [3] also proposed the use of statistical
sampling for simulation of multi-threaded workloads. They
have shown that fewer samples are needed when the goal
is to compare the performance of two configurations. This is
because the variance between the difference in performance of
a program across the configurations is lower than the variance
in performance for each configuration.

Perelman et al [11] proposed a phase guided technique
for selecting simulation regions for multi-threaded programs.
They do not deal with the non-determinism problem in their

181

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

ammp applu apsi equake fma3d galgel wupwise average

w
ei

g
h

ed
 s

p
ee

d
-u

p

(a
ve

ra
g

e
ac

ro
ss

 s
am

p
le

s)

cfg1-nomatch cfg2-nomatch cfg1-match cfg2-match
1.361.21 1.361.30 1.22 1.211.151.17 1.36 1.15

Fig. 5. Weighted speed-ups computation for baseline against cfg1 and cfg2, when using all the synchronization stalls to compute the performance, and using
only the non-commons synchronization stalls across the runs (our approach). Some of the bars have no visible error bars, because the error is very small.

approach. Our work is orthogonal to theirs, and could be easily
integrated to pick representative region samples for simulation.

VIII. SUMMARY AND FUTURE DIRECTIONS

As multiprocessors become mainstream, simulation of
multi-threaded applications is of primary importance. Simulat-
ing these applications poses all the challenges that exist when
simulating single-threaded programs. In addition, simulation
of multi-threaded workloads suffer from non-determinism.

This paper presented a technique to handle the non-
determinism problem in multi-threaded simulation for mul-
tiprocessor designs. Our technique focuses on user-level de-
terministic simulation. Our simulation is deterministic because
the behavior of the benchmark is completely reproducible from
run to run, by controlling the sources of non-determinism.
We presented an efficient technique to create checkpoints for
deterministic simulation of multi-threaded workloads, which
records the order of shared-memory updates. We also pre-
sented the implementation of a deterministic simulator that
consumes these checkpoints. Our technique introduces stalls
during the simulation which would not naturally occur so we
can control the progress of threads and ensure a deterministic
execution. We presented a technique to account for and deal
with these stalls in order to provide a performance estimate
for the simulation runs.

For future work, we would like to look at selecting rep-
resentative samples using a technique similar to [11]. In
this paper we presented a technique for relative performance
analysis. We would also like to come up with a technique for
absolute performance projection for multi-threaded programs
using deterministic simulation.

REFERENCES

[1] A. R. Alameldeen and D. A. Wood. Variability in architectural simula-
tions of multi-threaded commercial workloads. In Annual International
Symposium on High Performance Computer Architecture (HPCA-9),
2003.

[2] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner,
Wesley B. Jones, and Bodo Parady. Specomp: A new benchmark
suite for measuring parallel computer performance. In WOMPAT ’01:
Proceedings of the International Workshop on OpenMP Applications
and Tools, pages 1–10, London, UK, 2001. Springer-Verlag.

[3] Magnus Ekman and Per Stenstrom. Enhancing multiprocessor architec-
ture simulation speed using matched-pair comparison. In Proceedings of
the International Symposium on Performance Analysis of Systems and
Software, 2005.

[4] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan.
Asim: A performance model framework. Computer, 35(2):68–76, 2002.

[5] Kevin M. Lepak, Harold W. Cain, and Mikko H. Lipasti. Redeeming
ipc as a performance metric for multithreaded programs. In PACT
’03: Proceedings of the 12th International Conference on Parallel
Architectures and Compilation Techniques, page 232, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] C. K Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Programming
Language Design and Implementation, Chicago, IL, June 2005.

[7] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system timing-
first simulation. In SIGMETRICS ’02: Proceedings of the 2002 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 108–116, New York, NY, USA, 2002. ACM
Press.

[8] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In
ISCA, June 2005.

[9] Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn,
and Brad Calder. Automatic logging of operating system effects
to guide application-level architecture simulation. In SIGMETRICS
’06/Performance ’06: Proceedings of the joint international conference
on Measurement and modeling of computer systems, pages 216–227,
New York, NY, USA, 2006. ACM Press.

[10] R. H. B. Netzer. Optimal tracing and replay for debugging shared-
memory parallel programs. In Proceedings of the ACM/ONR Workshop
on Parallel and Distributed Debugging, pages 1–11, 1993.

[11] Erez Perelman, Marzia Polito, Jean-Yves Bouguet, John Sampson, Brad
Calder, and Carole Dulong. Detecting phases in parallel applications
on shared memory architectures. In IEEE International Parallel and
Distributed Processing Symposium, pages 25–29, 2006.

[12] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X, October
2002.

[13] Dean M. Tullsen and Jeffery A. Brown. Handling long-latency loads
in a simultaneous multithreading processor. In MICRO 34: Proceedings
of the 34th annual ACM/IEEE international symposium on Microarchi-
tecture, pages 318–327, Washington, DC, USA, 2001. IEEE Computer
Society.

[14] Eric Tune, Dongning Liang, Dean M. Tullsen, and Brad Calder. Dynamic
prediction of the critical dependence path. In Proceeedings of the 7th
International Symposium On High Performance Computer Architecture,
2001.

[15] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anas-
tassia Ailamaki, Babak Falsafi, and James C. Hoe. Simflex: Statistical
sampling of computer system simulation. IEEE Micro, 26(4):18–31,
2006.

[16] Roland E. Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C.
Hoe. SMARTS: Accelerating microarchitecture simulation via rigorous
statistical sampling. In ISCA-30, June 2003.

[17] M. Xu, R. Bodik, and M. Hill. A flight data recorder for enabling full-
system multiprocessor deterministic replay. In 30th Annual International
Symposium on Computer Architecture, San Diego, CA, 2003.

182

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

