

Laboratory for Computer Architecture

Energy-Aware Application Scheduling on a Heterogeneous Multi-core System

Jian Chen and Lizy K. John

© The University of Texas at Austin

Introduction & Motivation

Heterogeneous multi-core processor

- Static : Cell [Hofstee, HPCA'05]
- Dynamic : Core Fusion [Ipek ISCA'07], Tflex[Kim Micro'07]
- Meet diverse computational requirements.

Program scheduling

- Dynamic trial-and-error approach [Kumar, Micro'03]
 - Context switching overhead
 - Not scalable

Introduction & Motivation (Cont.)

Program's inherent characteristics

- Define the computational requirements
- Can be leveraged to guide the program scheduling in heterogeneous computing environment.
- Example:

Outline

Overview of the Fuzzy Logic Approach

Suitability Metrics

- Issue Width Suitability
- Branch Predictor Suitability
- Cache Suitability

Evaluation

- Experiment Setup
- Experimental Results
- Conclusion

Overview of the Fuzzy Logic Approach

Program profile

Three important program characteristics

Processor Configurations

- Three suitability degrees
- Fuzzy inference system

or

Rule Set

IF			THEN
Issue Width Suitability	Branch Predictor Suitability	Cache Size Suitability	Overall Suitability
Low	Low	Low	EL
Low	Low	High	VL
Low	High	Low	L
High	Low	Low	ML
Low	High	High	MH
High	Low	High	Н
High	High	Low	VH
High	High	High	EH

© The University of Texas at Austin

Outline

- Fundamentals of Fuzzy Logic
- Suitability Metrics
 - Issue Width Suitability
 - Branch Predictor Suitability
 - Cache Suitability
- Evaluation
 - Experiment Setup
 - Experimental Results
- Conclusion

Suitability Metrics – Issue Width Suitability

- Measures the match between the program's ILP and the processor's issue width.
 - The center of the mass (weighted average) of the dependency distance distribution
 - The distance between the mass center and the node represented by the issue width
- Need to complement the corresponding condition of the rule

IssueWidthSuitability(i) =
$$\begin{vmatrix} X_i - \frac{\sum_{i=1}^{4} P_i * X_i}{\sum_{i=1}^{4} P_i} \end{vmatrix}$$

 X_{i} , *i*=1..4, are the x coordinates of the nodes representing the issue width. P_{i} *i*=1..4, are the percentage of instructions that can be best exploited with issue width X_{i} .

Suitability Metrics – Branch Predictor Suitability

- Measure the match between program's branch predictability and the branch predictor size.
 - Branch transition rate [Haungs, HPCA'00]
 - Buckets [0,0.1], [0.1,0.2], [0.2,0.3] ... [0.9,1.0]
 - The center of the mass (weighted average) of the distribution
- Need to complement the corresponding condition of the rule

$$Branck Suitability(l) = \left| B_l - \frac{(B_1 \circ (P_2 + P_3) + B_2 \circ (P_1 + P_4) + B_1 \circ (P_4 + P_7) + B_4 \circ w \circ \sum_{l=1}^{n} P_l)}{\sum_{i=1}^{4} P_i + \sum_{i=1}^{9} P_i + w \circ \sum_{i=1}^{6} P_i} \right|$$

 B_{i} , *i*=1..4, are the x coordinates of the nodes representing the sizes of the branch predictors, w is the weight.

Suitability Metrics – Cache Suitability

- Measure the degree of the match between the program's data locality and the cache size.
- No similar relationship between the reuse distance and the corresponding desired L1 cache size.
- Cache Efficiency:
 - Calculates how much program locality per unit cache size captures
 - Need to be normalized so that the value is in [0,1]

$$CacheSuitability = \frac{\left(\frac{P_{R \leq Cl}}{Cl}\right)}{\left(\frac{P_{R \leq C}}{C}\right)_{max}}$$

 $P_{R < C_i}$, *i*=1..4, are the percentage of data accesses with reuse distance less than C_i . C_i *i*=1..4, are the L1 cache size of core i.

Outline

Fundamentals of Fuzzy LogicSuitability Metrics

- Issue Width Suitability
- Branch Predictor Suitability
- Cache Suitability
- Evaluation
 - Experiment Setup
 - Experimental Results
- Conclusion

Experiment Setup

- Single-ISA quad-core heterogeneous processor, with each core an out-of-order processor
- X_i and B_i, i=1..4, are set to 0.125, 0.25, 0.5, and 1.
- Simpoint Interval with 100Million Instructions for SPECcpu 2000 benchmarks
- Using Wattch to collect power and performance data.

Items	Configuration Options			
Issue Width	single-issue, 2-issue, 4-issue, 8-issue			
L1 D-Cache	16KB, 4-way, block size 64byte, 32KB, 4-way, block size 64byte, 64KB, 4-way, block size 64byte,			
Branch Predictor	1K Gshare, 2K Gshare, 4K Gshare, 8K Gshare			
Items	Configurations			
Core 1	Out-of-order, 2-issue, Gshare(1k), 16k 4-way L1 d-cache 64byte, 32k 2-way i-cache 64byte, 512k L2 cache			
Core 2	Out-of-order, 2-issue, Gshare(1k), 32k 4-way L1 d-cache 64byte, 32k 2-way i-cache 64byte, 512k L2 cache			
Core 3	Out-of-order, 4-issue, Ghsare(4k), 32k 4-way L1 d-cache 64byte, 32k 2-way i-cache 64byte, 512k L2 cache			
Core 4	Core 4 Out-of-order, 8-issue, Gshare(8k), 64k 4-way L1 d-cache 64byte, 32k 2-way i-cache 64byte, 512k L2 cache			

Experimental Results (1)

- Evaluation of issue width suitability
 - Spearman's Rank Coefficient:

$$ho = 1 - rac{6 \sum d_i^2}{n(n^2-1)}$$
 , d_i is the rank difference

Experimental Results (2)

Evaluation of branch predictor suitability

Experimental Results (3)

Evaluation of cache suitability.

Experimental Results (4)

Evaluation of overall suitability

Experimental Results(5)

 Average EDP reduction rate of the suitability-guided scheduling compared with the random scheduling.

Experimental Results(6)

 EDP reduction rate comparison between the suitability guided scheduling and the oracle scheduling (random scheduling as the baseline)

Backup -- Experimental Results(5)

 EDP comparison between suitability-guided scheduling and Trial-and-error scheduling

Conclusion & Future work

- A fuzzy logic based approach to schedule the program to its optimum core in heterogeneous multi-core.
- The method achieves 15% average reduction in EDP compared with that of the random scheduling approach

Future Work

- More program characteristics in determining the suitability.
- The effects of resource sharing and inter-core communication.
- Extension to dynamic heterogeneous multi-core processor.

Thank You

© The University of Texas at Austin

References

- Kim, Changkyu; Sethumadhavan, Simha; Govindan, M.S.; Ranganathan, Nitya; Gulati, Divya; Burger, Doug; Keckler, Stephen W., "Composable Lightweight Processors," 40th Annual IEEE/ACM International Symposium on Microarchitecture, pp.381-394, 1-5 Dec. 2007
- E. İpek, M. Kırman, N. Kırman, and J.F. Martínez. "Core Fusion: Accommodating software diversity in chip multiprocessors". In Intl. Symposium. on Computer Architecture, San Diego, CA, June 2007
- Hofstee, H.P., "Power efficient processor architecture and the cell processor," 11th International Symposium on High-Performance Computer Architecture, HPCA-11. pp. 258-262, Feb. 2005
- M.Haungs, P.Sallee, M. Farrens, "Branch transition rate: a new metric for improved branch classification analysis," Proceedings. Sixth International Symposium on High-Performance Computer Architecture. HPCA-6., pp.241-250, 2000
- R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. "Single-ISA Heterogeneous Multi-core Architectures: The Potential for Processor Power Reduction" *In International Symposium on Microarchitecture, Dec. 2003.*