STAMP: Stanford Transaction al
Applications for Multi-Processing

Chi Cao Minh, JaeWoong Chung,
Christos Kozyrakis, Kunle Olukotun

http://stamp.stanford.edu
15 September 2008

= Multi-core chips are here
But writing parallel SW is hard

= Transactional Memory (TM) is a promising solution
Large atomic blocks simplify synchronization

Speed of fine-grain locks with simplicity of coarse-grain
locks

But where are the benchmarks?

= STAMP: A new benchmark suite for TM
8 applications specifically for evaluating TM
Comprehensive breadth and depth analysis
Portable to many kinds of TMs (HW, SW, hybrid)
Publicly available: http://stamp.stanford.edu

Transactional Memory Primer
Design of STAMP

Evaluation of STAMP

Conclusions

= Commonly achieved via:
Threads for parallelism
Locks for synchronization

= Unfortunately, synchronization with locks is hard

Option 1: Coarse-grain locks
= Simplicity ©
= Decreased concurrency ®

Option 2: Fine-grain locks
= Better performance © (maybe)

= Increased complexity ® (bugs)
Deadlock, priority inversion, convoying, ...

= What is a transaction?

Group of instructions in computer program:
atomic {
if (x != NULL) x.foo();
y = true;
}

Required properties: Atomicity, Isolation, Serializability

= Key idea: Use transactions to ease parallel
programming
Locks — programmers define & implement
synchronization

TM — programmers declares & system implements
= Simple like coarse-arain locks & fast like fine-arain locks

= Each core optimistically executes a transaction
= Life cycle of a transaction:
Start
Speculative execution (optimistic)
Build read-set and write-set

Commit
* Fine-grain R-W & W-W conflict detectiol

Abort & rollback

Thread 1: insert 2 Thread 2: insert 5
Read-set: 6, 3, 1 Read-set: 6, 3, 4
Write-set: 1 Write-set: 4

Thread 1: insert 2 Thread 2: insert 0
Read-set: 6, 3, 1 Read-set: 6, 3, 1
Write-set: 1 Write-set: 1

= Design of STAMP

= Evaluation of STAMP

= Conclusions

= Benchmarks for multiprocessors
SPLASH-2 (1995), SPEComp (2001), PARSEC (2008)

Not well-suited for evaluating TM
= Regular algorithms without synchronization problems
= No annotations for TM

= Benchmarks for TM systems
Microbenchmarks from RSTMv3 (2006)
STMBench7 (2007)
Haskell applications by Perfumo et. al (2007)

= Breadth: variety of algorithms & app domains

= Depth: wide range of transactional behaviors

= Portability: runs on many classes of TM systems

Benchmark Breadth Depth Portability Comments
RSTMv3 no yes yes Microbenchmarks
STMbench7 no yes yes Single program
Perfumoetal. no yes no Microbenchmarks;

Written in Haskell

10

= Breadth

8 applications covering different domains & algorithms

TM simplified development of each
= Most not trivially parallelizable
= Many benefit from optimistic concurrency

= Depth
Wide range of important transactional behaviors

= Transaction length, read & write set size, contention amount
= Facilitated by multiple input data sets & configurations per app

Most spend significant execution time in transactions

= Portability

Written in C with macro-based transaction annotations

Works with Hardware TM (HTM), Software TM (STM), and
hybrid TM 11

" -w .

Application
bayes

genome
intruder
kmeans

labyrinth

ssca2

vacation

yada

Domain

Machine learning

Bioinformatics
Security

Data mining
Engineering

Scientific

Online transaction
processing

Scientific

Description

Learns structure of a Bayesian
network

Performs gene sequencing
Detects network intrusions
Implements K-means clustering
Routes paths in maze

Creates efficient graph representation

Emulates travel reservation system

Refines a Delaunay mesh

12

= Learns relationships among variables from
observed data

= Relationships are edges in directed acyclic graph:

Sprinkler
O

- Grass Wet |

13

Analyze data

ransaction
Pick best
potential edge

Il create

Insert edge

= Emulates travel reservation system
Similar to 3-tier design in SPECjbb2000

| ClientTier | ManagerTier | Database Tier

|

|
Chi : Customer
|

Manager

JaeWoon

Reserve
Cancel
Update

Get task?

yes

Task kind?

Manager
does update

16

= Evaluation of STAMP

= Conclusions

17

Experimenta

= Execution-driven simulation
1-16 core x86 chip-multiprocessor with MESI coherence

Supports various TM implementations:
« Hardware TMs (HTMs)

= Software TMs (STMs)

= Hybrid TMs

= Ran STAMP on simulated TM systems

= Two experiments:
What transactional characteristics are covered in STAMP?
Can STAMP help us compare TM systems?

18

Per Transaction

Application Time in
Instructions Reads Writes | Retries Transactions
bayes 60584 24 9 0.59 83%
genome 1717 32 2 0.14 97%
intruder 330 71 16 3.54 33%
kmeans 153 25 25 0.8l 3%
labyrinth 219571 35 36 0.94 100%
ssca2 50 | 2 0.00 17%
vacation 316l 401 8 0.02 92%
yada 9795 256 108 251 100%

19

= Measured speedup on 1-16 cores for various TMs

vacation

14 »

12
g 10
- 8
g ¢ v ~HTM
o4 ¥ | "Hybrid TM

2 | A E —""" STM

o ="

0 5 10 15

Processor Cores

= In general, hybrid faster than STM but slower than
HTM

20

= Sometimes the behavior is different from anticipated

bayes

*HTM
“Hybrid TM
*STM

0 5 10 15
Processor Cores

= Lesson: Importance of conflict detection granularity

21

= Some other lessons we learned:

Importance of handling very large read & write sets
(labyrinth)

Optimistic conflict detection helps forward progress
(intruder)

= Diversity in STAMP allows thorough TM analysis

Helps identify (sometimes unexpected) TM design
shortcomings

Motivates directions for further improvements

= STAMP can be a valuable tool for future TM
research

22

= STAMP is a comprehensive benchmark suite for TM
Meets breadth, depth, and portability requirements
Useful tool for analyzing TM systems

= Public release: http://stamp.stanford.edu

Early adopters:
= Industry: Microsoft, Intel, Sun, & more
= Academia: U. Wisconsin, U. lllinois, & more

TL2-x86 STM

23

Stanford
Transactional
Applications -
Multi-
Processing

Use STAMP in your oud (,'
Transactional Memory research e

and help us STAMP out Small

small transactions!

= W

old algorithms and Transactions

http://stamp.stanford.edu

