PARSEC vs. SPLASH-2: A Quantitative Comparison of Two Multithreaded Benchmark Suites

Christian Bienia (Princeton University),
Sanjeev Kumar (Intel),
Kai Li (Princeton University)
Outline

• Overview
 – What is PARSEC?
 – Why a new benchmark suite?

• Objectives of PARSEC
 – Technology Trend 1: Proliferation of CMPs
 – Technology Trend 2: Change of Technology Constraints
 – Technology Trend 3: Growth of World Data

• Characteristics Analysis
 – Methodology
 – Results

• Conclusions
What is PARSEC?

- Princeton Application Repository for Shared-Memory Computers
- Benchmark Suite for Chip-Multiprocessors
- Started as Joint-Venture between Intel and Princeton University
- Freely available at:

 http://parsec.cs.princeton.edu/

- You can use it for your research

But what distinguishes PARSEC from SPLASH-2?
Requirements for a Benchmark Suite for CMPs

• Multithreaded Applications
 Future programs must run on multiprocessors

• Emerging Workloads
 Increasing CPU performance enables new applications

• Diverse
 Multiprocessors are being used for more and more tasks

• State-of-Art Techniques
 Algorithms and programming techniques evolve rapidly

• Support Research
 Our goal is insight, not numbers
Assessment of Situation

<table>
<thead>
<tr>
<th></th>
<th>Multithreaded</th>
<th>Emerging Workloads</th>
<th>Diverse</th>
<th>Not HPC-Focused</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC CPU2006</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SPEC OMP2001</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SPLASH-2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ALPBench</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BioBench</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>BioParallel</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MediaBench II</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MineBench 2.0</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PhysicsBench</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

This is why we created PARSEC
Workloads

<table>
<thead>
<tr>
<th>Program</th>
<th>Application Domain</th>
<th>Parallelization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackscholes</td>
<td>Financial Analysis</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Bodytrack</td>
<td>Computer Vision</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Canneal</td>
<td>Engineering</td>
<td>Unstructured</td>
</tr>
<tr>
<td>Dedup</td>
<td>Enterprise Storage</td>
<td>Pipeline</td>
</tr>
<tr>
<td>Facesim</td>
<td>Animation</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Ferret</td>
<td>Similarity Search</td>
<td>Pipeline</td>
</tr>
<tr>
<td>Fluidanimate</td>
<td>Animation</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Freqmine</td>
<td>Data Mining</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Streamcluster</td>
<td>Data Mining</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Swaptions</td>
<td>Financial Analysis</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>Vips</td>
<td>Media Processing</td>
<td>Data-parallel</td>
</tr>
<tr>
<td>X264</td>
<td>Media Processing</td>
<td>Pipeline</td>
</tr>
</tbody>
</table>

PARSEC is substantially different from SPLASH-2
Outline

• Overview
 – What is PARSEC?
 – Why a new benchmark suite?

• Objectives of PARSEC
 – Technology Trend 1: Proliferation of CMPs
 – Technology Trend 2: Change of Technology Constraints
 – Technology Trend 3: Growth of World Data

• Characteristics Analysis
 – Methodology
 – Results

• Conclusions
Objectives of PARSEC

- PARSEC was designed to capture recent technology trends:
 - **Proliferation of CMPs**
 Multiprocessors are used in more and more areas
 - **Change of Technology Constraints**
 Different software optimizations required for CMPs
 - **Growth of World Data**
 Huge increase of stored data which must be processed

- These trends are changing programs
Impact of Technology Trends

- Proliferation of CMPs:
 - New application areas (e.g. video games)
 - New parallelization models (e.g. pipelining)

- Change of Technology Constraints:
 - Constrained off-chip bandwidth
 - Shared caches

- Growth of World Data:
 - Huge increase of input data
 - Higher importance of linear algorithms

We show that these trends affect program characteristics
Outline

• Overview
 – What is PARSEC?
 – Why a new benchmark suite?

• Objectives of PARSEC
 – Technology Trend 1: Proliferation of CMPs
 – Technology Trend 2: Change of Technology Constraints
 – Technology Trend 3: Growth of World Data

• Characteristics Analysis
 – Methodology
 – Results

• Conclusions
Methodology

- Simulate abstract cache hierarchy with CMPim
- Preprocess chosen characteristics with Principal Component Analysis (PCA) to eliminate correlation
- Compute similarity with hierarchical clustering
- Visualize results with dendrograms and scatter plots

44 characteristics chosen:
- Instruction mix (4 characteristics)
- Working set (8 characteristics)
- Sharing (32 characteristics)
Redundancy & Similarity

Clustering within SPLASH-2

Clustering of Unique Workloads
Redundancy & Similarity

Clustering of Unique Workloads

Clustering within SPLASH-2

Linkage Distance

d = ~0.42

d = ~0.72
PARSEC is more diverse than SPLASH-2
PARSEC and SPLASH-2 have little in common

Benchmark suites cluster in different areas, little overlap
Instruction Mix Differences

PARSEC workloads use cores differently
Some PARSEC workloads use memory differently
PARSEC workloads communicate differently
Outline

• Overview
 - What is PARSEC?
 - Why a new benchmark suite?

• Objectives of PARSEC
 - Technology Trend 1: Proliferation of CMPs
 - Technology Trend 2: Change of Technology Constraints
 - Technology Trend 3: Growth of World Data

• Redundancy & Similarity
 - Methodology
 - Results

• Conclusions
Conclusions

- PARSEC and SPLASH-2 are substantially different benchmark suites
- PARSEC is more diverse
- No single reason for differences

You should expect different results
Thank you!

Questions?