b

Characterizing and Improving the
Performance of Intel Threading
Building Blocks

Gilberto Contreras, Margaret Martonosi
Princeton University

[ISWC'08

AL

- » Chip Multiprocessors are the new computing
platform.

— 2 cores, 4 cores, 8 cores... Are we ready?
e Why is parallelism so challenging?

ul.”

N
LLLLLLEEEEVERREETEE DL

ll

Parallelism Annotated/Extracted

,-|||",. A
nnm

This work answers the following questions:

e What are some of the major sources of overheads?
e How do they impact overall parallelism performance?
e How can we improve parallelism performance?

|
[N .

Burwork focus

e This talk will focus on the Intel Threading Building
Blocks (TBB)

— Task-based parallelization library for C++ applications
— Support a wide range of parallelism types
— Utilizes task stealing for load balancing

Methodology is applicable to other parallelism management
approaches

?ﬁ’ééntaﬁon Outline

Description of TBB
— Programming example
— Task management in TBB

Characterization Methodology

— Measuring basic operations using simulation and
real-system measurements

— TBB overheads in PARSEC benchmarks
— Performance of Task Stealing

Improving TBB
— Occupancy-based task stealing
Summary and Conclusions

(&)

Annotation and Management

-

for (i=k+1; i<size; i1++) {

LEi]J[k] = MLi1Lk] 7 MEK]1[K];
for(J=i+1; j<size; j++)
MEA1D1 = MEdO] -
LEn]EkI*MEKT D] 5

o

chunk size -
A procedure:
[Work | spawn0
acquire_queue()
Q;::::i::j::i:;;zb get_task()
spawn()
v |} 0\ spawn()
steal()
acquire_queue()
get_task()
— o~ ™ spawn()
g|| g E steal()
S S S acquire_queue()
=21 L3 get_task()

i

—Methodology

Benchmarks

— PARSEC
— Microbenchmarks

a1

?

Simulation Results (4-32 cores)

Cycles

800 ~

700 +

600

500 +

400

300

200

100

Lof Parallelism Management

04 cores 08 cores 012 cores @16 cores W 32 cores

,_|_'_|_— ;

B

|

get_task

spawn

stealing stealing acquire_queue wait_for_all
(successful) (unsuccessful)

Runtime activity

bl

Average time p

co

Average time

9

verheads: PARSEC

Number of cores

47%

P32

54%

B Scheduler [] Synchronization
[] Waiting [] Stealing
fluidanimate swaptions 1%
- 30%
S 25%
5 20%
o
. £ 15%]
— 5 10%
S
— ﬁ T
==
P8 P12 P16 P25 P32 P8 P12 P16 P25
Number of cores Number of cores
blackscholes streamcluster 34%
- 30%
| S 25%
. 5 20%
o
; £ 15%
e §,10%)
=N BN B R m
P8 P12 P16 P25 P32 P8 P12 P16 P25

Number of cores

P32

ﬁving Stealing

e TBB utilizes random stealing as its victim

45% -
40% -
35% -
30% -
25% -
20% -
15% ~
10% ~

5% -

0%

selection policy

O Success Rate

TEIFLP

e
~\~

.

[0 False Negatives

__

(4],

P4‘P8‘P12‘P16‘P25‘P32‘

Bitcounter

P4‘P8‘P12‘P16‘P25‘P32‘

LU

P4 ‘ P8 ‘PlZ ‘ P16 ‘ P25 ‘ P32

Matmult

[N
[N

Becupancy-based Stealing

'Hl”

Random Stealing Occupancy-based stealing

o Seir 5
7

— N ™ <t — N ™ <
IREIREIRE 2l 1B &) L8
e Random stealing: e Occupancy stealing:
e Random number e Scanning

e Stealing e Stealing

12

f Occupancy-based Stealing

il

e Smarter selection policies are desired
e High potential in overhead reduction

13

LLLLLLEEEEREEREEE T T —

€onclusions

Increasing usage of TBB makes it a prime candidate
for in-depth characterization

Parallelization libraries help, but tend to exhibit
high (dynamic) overheads (=40%0 at 32 cores)

Understanding software overheads is the first step
INn creating high-performance parallel systems

We have presented a detailed characterization of
the Intel Threading building Blocks and
Implemented occupancy-based stealing (19%o
performance over random stealing).

=
D

Thanks!

Summary

e Programmers require tools that allows them to
take (fast) advantage of increasing core counts.

e Parallelization libraries help, but tend to exhibit
high (dynamic) overheads (=40%0 at 32 cores)

e Understanding software overheads is the first step
INn creating high-performance parallel systems

e We have presented a detailed characterization of
the Intel Threading building Blocks and
iImplemented occupancy-based stealing (19%
performance over random stealing).

16

Parallelism Management

"

Cycles

800

700

600 -

500

400

300

200

100

e 4 core, 1.8GHz AMD system
» Oprofile configured to
measure CPU_CLK_UNHALTED

B 1 core B 2cores B 3cores B4 cores

800 ~

700

600

500

Cycles

300 ~

h - . l 100
1 0

get_task spawn steal acquire_queue wait_for_all

Runtime activity

Our goals:

e 1to 32 core CMP simulator
e 2-ISSuUe, In-order cores

 Shared L2

04 cores 08 cores 012 cores @ 16 cores W 32 cores

400 4

200 ~

get_task spawn

stealing stealing acquire_queue wait_for_all
(successful) (unsuccessful)

Runtime activity

1) Reduce per-event overheads
2) Improve rebalancing

LLLLLEEEERRRERE TR ELEE

~ Static

IC versus Dynamic Management

bl

Speedup
=
o

PARSEC

Static (pthread) —=—TBB

4 8 12 16 20 24 28 32 36
Number of cores

fluidanimate

32

28

24

20

7 32
7
/7
7
s
d
7
s

4 o 20

7 =

4444 4 3 16
[}
Q.

12 16 20 24 28 32 36
Number of cores

swaptions

4

8 12l 6 D0Ee DA D850 30 5236
Number of cores

blackscholes

