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- » Chip Multiprocessors are the new computing
platform.

— 2 cores, 4 cores, 8 cores... Are we ready?
e Why is parallelism so challenging?
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Parallelism Annotated/Extracted
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This work answers the following questions:

e What are some of the major sources of overheads?
e How do they impact overall parallelism performance?
e How can we improve parallelism performance?
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Burwork focus

e This talk will focus on the Intel Threading Building
Blocks (TBB)

— Task-based parallelization library for C++ applications
— Support a wide range of parallelism types
— Utilizes task stealing for load balancing

Methodology is applicable to other parallelism management
approaches



?ﬁ’ééntaﬁon Outline

Description of TBB
— Programming example
— Task management in TBB

Characterization Methodology

— Measuring basic operations using simulation and
real-system measurements

— TBB overheads in PARSEC benchmarks
— Performance of Task Stealing

Improving TBB
— Occupancy-based task stealing
Summary and Conclusions
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Annotation and Management
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—Methodology

Benchmarks

— PARSEC
— Microbenchmarks
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Simulation Results (4-32 cores)
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ﬁving Stealing

e TBB utilizes random stealing as its victim
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Becupancy-based Stealing
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Random Stealing Occupancy-based stealing
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e Random stealing: e Occupancy stealing:
e Random number e Scanning

e Stealing e Stealing
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f Occupancy-based Stealing
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e Smarter selection policies are desired
e High potential in overhead reduction
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€onclusions

Increasing usage of TBB makes it a prime candidate
for in-depth characterization

Parallelization libraries help, but tend to exhibit
high (dynamic) overheads (=40%0 at 32 cores)

Understanding software overheads is the first step
INn creating high-performance parallel systems

We have presented a detailed characterization of
the Intel Threading building Blocks and
Implemented occupancy-based stealing (19%o
performance over random stealing).
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Thanks!




Summary

e Programmers require tools that allows them to
take (fast) advantage of increasing core counts.

e Parallelization libraries help, but tend to exhibit
high (dynamic) overheads (=40%0 at 32 cores)

e Understanding software overheads is the first step
INn creating high-performance parallel systems

e We have presented a detailed characterization of
the Intel Threading building Blocks and
iImplemented occupancy-based stealing (19%
performance over random stealing).
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Parallelism Management
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e 4 core, 1.8GHz AMD system
» Oprofile configured to
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Runtime activity

Our goals:

e 1to 32 core CMP simulator
e 2-ISSuUe, In-order cores
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Runtime activity

1) Reduce per-event overheads
2) Improve rebalancing
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~ Static

IC versus Dynamic Management
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