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Motivation

• Chip Multiprocessors are the new computing 
platform. 
– 2 cores, 4 cores, 8 cores… Are we ready?

• Why is parallelism so challenging?

• Respond to:
– OS effects
– Thermal emergencies
– Variability trends
– Reliability issues

• Identify parallelism
• Annotation/extraction of parallelism
• Mapping to cores



How is Parallelism Annotated/Extracted

• What are some of the major sources of overheads?
• How do they impact overall parallelism performance?
• How can we improve parallelism performance?

Compiler
Parallel Languages

Parallelization Libraries
Other

DSWP, SUIF, Polaris
Cilk, StreamIT, Linda
Orca, Parloc, Emerald, etc

TBB, OpenMP, Java threads, 
pthreads, CUDA, etc

This work answers the following questions:



Our work focus

• This talk will focus on the Intel Threading Building 
Blocks (TBB)

– Task-based parallelization library for C++ applications
– Support a wide range of parallelism types
– Utilizes task stealing for load balancing

Methodology is applicable to other parallelism management 
approaches



5

Presentation Outline

• Description of TBB
– Programming example
– Task management in TBB

• Characterization Methodology
– Measuring basic operations using simulation and 

real-system measurements
– TBB overheads in PARSEC benchmarks
– Performance of Task Stealing

• Improving TBB
– Occupancy-based task stealing

• Summary and Conclusions
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Annotation and Management
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class LUWork {
void operator()(cost blocked_range<int> &b){

for (i=b.begin(); i!=b.end(); i++) {
L[i][k] = M[i][k] / M[k][k];
for(j=i+1; j<size; j++)
M[i][j] = M[i][j] –

L[i][k]*M[k][j];
}

}
}

LUWork work(L,M,k,size);
parallel_for(blocked_range(
k+1, size, CHUNK_SIZE),work);

TBB

for (i=k+1; i<size; i++) {
L[i][k] = M[i][k] / M[k][k];
for(j=i+1; j<size; j++)
M[i][j] = M[i][j] –

L[i][k]*M[k][j];
}
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Reducing TBB Library Overhead?

•Understand Overheads
–Creating tasks

•spawn()

–Assigning tasks to worker 
threads

•get_task()
•queue_acquire()
•wait_for_all()

–Stealing or rebalancing 
parallelism

•steal()

•Improve parallelism 
reorganization policies

–Employ smart 
redistribution policies
–Make this as fast and as 
efficient as possible
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Methodology

Cycle-accurate CMP simulator
– 2-issue, in-order cores
– 32KB D$ (coherent), 32K I$
– 8MB shared L2 cache
– MSI directory-based coherence 

protocol
– Mesh network, 32b BW/port/cycle

Intel Threading Building Blocks (TBB)
– Open source 2.0 version

Benchmarks
– PARSEC
– Microbenchmarks

Real CMP System
– 4-core AMD system (2 

processors)
– 4GB RAM
– Linux 2.6
– Oprofile is used for 

performance counter 
measurements
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TBB Overheads: PARSEC
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Improving Stealing

• TBB utilizes random stealing as its victim 
selection policy



12

Occupancy-based Stealing
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• Occupancy stealing:
• Scanning
• Stealing

• Random stealing:
• Random number
• Stealing
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Performance of Occupancy-based Stealing

Occupancy-Based 1-cycle scan
Normal stealing

1-cycle scan
1-cycle stealing

P16 P25 P32 P16 P25 P32 P16 P25 P32

Bitcounter 2.5% 2.5% 2.7% 2.4% 2.8% 3.7% 4.7% 6.9% 7.8%

LU 10% 4.1% 9.7% 10.2% 4.6% 8.0% 16% 10.4% 20.6%

Matmult 9.5% 6% 19% 9.8% 7.0% 21.1% 10.8% 9.8% 28.7%

• Smarter selection policies are desired
• High potential in overhead reduction
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Conclusions

• Increasing usage of TBB makes it a prime candidate 
for in-depth characterization

• Parallelization libraries help, but tend to exhibit 
high (dynamic) overheads (>40% at 32 cores) 

• Understanding software overheads is the first step 
in creating high-performance parallel systems

• We have presented a detailed characterization of 
the Intel Threading building Blocks and 
implemented occupancy-based stealing (19% 
performance over random stealing).
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Thanks!
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Summary

• Programmers require tools that allows them to 
take (fast) advantage of increasing core counts.

• Parallelization libraries help, but tend to exhibit 
high (dynamic) overheads (>40% at 32 cores)

• Understanding software overheads is the first step 
in creating high-performance parallel systems

• We have presented a detailed characterization of 
the Intel Threading building Blocks and 
implemented occupancy-based stealing (19% 
performance over random stealing).
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Cost of Parallelism Management

• 4 core, 1.8GHz AMD system
• Oprofile configured to

measure CPU_CLK_UNHALTED

• 1 to 32 core CMP simulator
• 2-issue, in-order cores
• Shared L2

Runtime activity Runtime activity

Our goals:
1) Reduce per-event overheads
2) Improve rebalancing



Static versus Dynamic Management
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