
Michela Becchi – 9/11/2008

A Workload for Evaluating Deep Packet
Inspection Architectures

Michela Becchi, Mark Franklin and Patrick Crowley

IISWC ‘08

Michela Becchi – 9/11/2008

Context

Pattern matching over large data-sets of complex
regular expressions

Application:
» Networking: deep packet inspection

–Network Intrusion Detection and Prevention Systems
–Content based routing
–Content based billing
–Application level filtering

» Others:
–Bibliographic search

Architecture:
» Memory centric architectures (using cache)

2

Michela Becchi – 9/11/2008

In this paper

Workload to evaluate memory-centric regular
expression matching architectures
» Synthetic rule-set generator
» Traffic generator
» Memory layout generator for NFA/DFA based designs

Goal
» Fair comparison between designs
» Comprehensive tool

3

Michela Becchi – 9/11/2008 4

Background: handling multiple regex

n regex1
n regex2
n …
n regexN

NFA DFA

Search patterns

Input text: …abcayxwknxKNZamkml…
Linear processing
time independent
of number of
patterns

FPGA
designs

Memory-
centric
architectures

Michela Becchi – 9/11/2008 5

Background: Finite Automata

Text: a b c d

RegEx: (1) a+bc (2) bcd+ (3) cde

NFA

DFA

1 2

4 5

7 8

a

b

c

0

b c

∑

c d

d e

a

d

6/2

9/3

3/1

0 4

2

5

a

a:1-10

b c

b c d

c

c:1,3,5-10

d e

d

e

d
d

b:2-10
1 3/1

6/2 7/2

8 9 10/3

Match #1

Match #2

Match #1

Match #2

MEMORY
BANDWIDTH:
of state traversals
per input character

Better for DFAs

MEMORY SIZE:
states and
transitions

Better for NFAs

Michela Becchi – 9/11/2008

Regular Expression Taxonomy

Exact-match strings
» Fixed size patterns
» Properties:

1. DFA size ≤ NFA size ≤ # chars in the pattern-set
2. Multiple transitions to a state are on the same char
3. Optimizations based on hashing schemes possible

[A. Aho and M. Corasick, CACM 1975]
[S. Dharmapurikar et al, ANCS 2005]
[N. Artan et al, INFOCOM 2007]
[Kumar et al, ICNP 2007]

» Not expressive enough:

[R. Sommer and V. Paxson, CCS 2003]
[J. Newsome et al, Security and Privacy Symposium 2005]
[Y. Xie et al, SIGCOMM 2008]

6

Michela Becchi – 9/11/2008

Regular Expression Taxonomy (cont’d)

Character sets, single wildcards
» [ci-cjck]
» Properties:

–Aho-Corasick and hashing schemes not directly applicable
–Exhaustive enumeration of exact-match strings possible

Simple character repetitions
» c+, c*

» Properties:
–DFA size ~ # chars in the pattern-set
–Exhaustive enumeration of exact-match strings not possible

hashing schemes not applicable

7

exp
ressiven

ess

Michela Becchi – 9/11/2008

Regular Expression Taxonomy (cont’d)
Character sets and wildcards repetitions
» .*, [^ci-cj]*
» Properties:

–As for simple char repetitions
–When compiling multiple regular expressions in the same DFA,

DFA size can grow exponentially

–Viable solutions:
NFA
Rule partitioning into multiple DFAs

8

exp
ressiven

ess

n regex1
n regex2
n …
n regexN

NFA DFA

RE1 RE2 RE3 REj … REi-1 REi . . . Rn-k Rn

DFA1 DFA2 DFA3 DFA4 DFAk

k concurrent DFAs � k memory accesses/input char

Michela Becchi – 9/11/2008

Regular Expression Taxonomy (cont’d)
Counting constraints
» c{m,n}, sub-pattern{m,n}
» .{m,n}, [^ci-cj]{m,n}

» Properties:
–Exhaustive enumeration not feasible for large character ranges

and large m,n
–Exponential DFA size even on single regular expressions

–Viable solutions:
NFA
Hybrid-schemes using counters

9

exp
ressiven

ess

NFA DFAregex

Michela Becchi – 9/11/2008

In practice …

10

As of November 2007

Over time
» Data-set size
» Regular expression length
» Number of (repeated) character ranges
» Number of dot-star, [^\n\r]* terms

are increasing!

Data-set # RegEx [c1..cn] . c+ string+ [c1..cn]* [^\n\r]* .* c{n} string{n} [c1..cn]{n} .{n}
Snort1 22 7 4 0 4 23 8 2 0 5 0 1
Snort2 78 3 1 0 0 202 81 18 2 0 1 0
Snort3 102 16 2 2 1 268 26 5 1 2 1 0
Snort4 468 9 14 3 7 113 468 38 0 7 11 3
Bro0.8 226 1399 0 0 0 0 0 10 0 8 0 0
Bro0.9 40 22 20 0 6 1 0 0 0 10 0 0
ClamAV 30411 0 0 0 0 0 0 1221 0 0 0 113

Michela Becchi – 9/11/2008

Synthetic regex generation

RegEx: alternation of exact- and non-exact match
sub-patterns, according to frequency parameters

11

RE#
lengthMIN-MAX-AVG
sub-patternsEM

probabilistic seed freq[c1..ck]
freqc+
freq[\n\r]*
freq.*
freq.{n}
…RegEx

generator

Regex set

Michela Becchi – 9/11/2008

Traffic model

Goal:
» Generate synthetic traffic traces, rule-set dependent
» Simulate different degrees of malicious activity

Observation:
» Average/good traffic:

– limited to few low-depth states
–high degree of locality (→ fast path)

» Bad traffic:
–partial matches → move to higher depth
– low degree of locality (→ slow path)

non-repetitive input streams
ideally random walks in FA

12

1 2

4 5

7 8

a

b

c
0

b c

∑
c d

d e

a

d

6/2

9/3

3/1

Michela Becchi – 9/11/2008

Traffic model (cont’d)

Idea:
» pM: probability of malicious traffic
» FA based model: given pM and set of active states, what is

the next character in the input stream?

Operation:
» At each step:

1. Forward transition w/ pM
2. Random char w/ (1- pM)

» In case (1)
– If outgoing transitions exist

Depth/active set size driven selection
– else

Random char selection

13

Michela Becchi – 9/11/2008

Memory encoding schemes
Note:
» NFA:

– common prefixes collapsed
– at most one epsilon tx/state

» DFA:
– default transition compression

[Kumar et al, SIGCOMM 2006]
[Becchi and Crowley, ANCS 2007]
» At most 2N state traversal to process text of length N

Encoding schemes
» Linear, bitmapped, indirect addressing
» Affects

–Memory footprint
–Cost of state traversal

14

Michela Becchi – 9/11/2008

Memory footprint

15

0

300

600

900

1,200

1,500

exact-
match

range=0.5 range=1 dotstar=0.3 dotstar=0.6 dotstar=0.9

M
em

or
y

si
ze

 (i
n

K
B

) -
N

FA
 s

ol
ut

io
n

Pattern type

linear

bitmapped

ind.addr-32 bit

NFA

DFA

DFAs: 1 – 2 – 2 – 14 – 24 - 32

Michela Becchi – 9/11/2008

Experiments

16

Parameter Values

Traffic pM 0.35, 0.55, 0.75, 0.95

Cache size 4 KB, 16KB, 64KB, 256KB

line 64B

associativity DM

hit latency 1 clock cycle

miss latency 30 clock cycles

Memory
layout

encoding linear,
bitmapped,
ind. addr 32-bit
ind. addr. 64-bit

Michela Becchi – 9/11/2008

State traversals/input char

17

DFA
Rule-set clustering

NFA
pM affects active set

size

DFAs: 1 – 2 – 2 – 14 – 24 - 32

Michela Becchi – 9/11/2008

Effect of state encoding

18

NFA
- indirect

addressing
preferable

- bitmap overhead
not justified

DFA
rule-partitioning

limiting factor

pM=0.35

Michela Becchi – 9/11/2008

Effect of cache size

19

Indirect addressing, pM=0.95

NFA
16KB cache

sufficient

DFA
on complex rule-set

worse than NFA
even w/ 256KB

Michela Becchi – 9/11/2008

Summary

Proposal of workload to evaluate (memory-centric)
regular expression matching architectures
» Synthetic regular expression generator
» Traffic trace generator
» Memory layout generator
» Cache simulator

Model highlights:
» Performance depends on

–Rule-set size and complexity
–NFA/DFA representation
–Memory
–Cache size

On complex rule-sets, NFA can outperform DFAs

20

Michela Becchi – 9/11/2008

Thanks!

REGEX tool download: http://regex.wustl.edu

21

Questions?

Michela Becchi – 9/11/2008

Memory encoding scheme (cont’d)

22

default/ε- tx

labeled tx

next addr
c1, next addr1

ck, next addrk

default/ε- tx

labeled tx

next addr

next addr1

next addrk

bitmap

Linear:

Bitmapped:

COST
input dependent
(linear traversal)

COST
- Better for

average traffic
- Worse for

“matching” traffic

Michela Becchi – 9/11/2008

Memory encoding scheme (cont’d)

23

default/ε- tx

labeled tx

next state id
next state id1

next state idk

state id:
(c1, c2, …ck; discriminator)

hash
functio

n

MEMORY
Indirect addressing:

COST
1 memory
access/state
traversal

Michela Becchi – 9/11/2008

Automata size

24

DFAs: 1 – 2 – 2 – 14 – 24 - 32

