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Context

Pattern matching over large data-sets of complex
regular expressions

Application:
» Networking: deep packet inspection

–Network Intrusion Detection and Prevention Systems
–Content based routing
–Content based billing
–Application level filtering

» Others:
–Bibliographic search

Architecture:
» Memory centric architectures (using cache)
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In this paper

Workload to evaluate memory-centric regular 
expression matching architectures
» Synthetic rule-set generator
» Traffic generator
» Memory layout generator for NFA/DFA based designs

Goal
» Fair comparison between designs
» Comprehensive tool
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Background: handling multiple regex

n regex1
n regex2
n …
n regexN

NFA DFA

Search patterns

Input text: …abcayxwknxKNZamkml…
Linear processing 
time independent 
of number of 
patterns

FPGA
designs

Memory-
centric 
architectures
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Background: Finite Automata

Text: a b c d

RegEx: (1) a+bc (2) bcd+ (3) cde 
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Regular Expression Taxonomy

Exact-match strings
» Fixed size patterns
» Properties:

1. DFA size ≤ NFA size ≤ # chars in the pattern-set
2. Multiple transitions to a state are on the same char
3. Optimizations based on hashing schemes possible

[A. Aho and M. Corasick, CACM 1975]
[S. Dharmapurikar et al, ANCS 2005]
[N. Artan et al, INFOCOM 2007]
[Kumar et al, ICNP 2007]

» Not expressive enough:

[R. Sommer and V. Paxson, CCS 2003]
[J. Newsome et al, Security and Privacy Symposium 2005]
[Y. Xie et al, SIGCOMM 2008]
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Regular Expression Taxonomy (cont’d)

Character sets, single wildcards
» [ci-cjck]
» Properties:

–Aho-Corasick and hashing schemes not directly applicable
–Exhaustive enumeration of exact-match strings possible

Simple character repetitions 
» c+, c*

» Properties:
–DFA size ~ # chars in the pattern-set
–Exhaustive enumeration of exact-match strings not possible

hashing schemes not applicable
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Regular Expression Taxonomy (cont’d)
Character sets and wildcards repetitions
» .*,  [^ci-cj]*
» Properties:

–As for simple char repetitions
–When compiling multiple regular expressions in the same DFA, 

DFA size can grow exponentially

–Viable solutions:
NFA
Rule partitioning into multiple DFAs
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n regex1
n regex2
n …
n regexN

NFA DFA

RE1 RE2 RE3  REj … REi-1 REi . . . Rn-k Rn

DFA1 DFA2 DFA3 DFA4 DFAk

k concurrent DFAs � k memory accesses/input char
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Regular Expression Taxonomy (cont’d)
Counting constraints
» c{m,n},  sub-pattern{m,n}
» .{m,n},  [^ci-cj]{m,n}

» Properties:
–Exhaustive enumeration not feasible for large character ranges 

and large m,n
–Exponential DFA size even on single regular expressions

–Viable solutions:
NFA
Hybrid-schemes using counters 
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In practice …
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As of November 2007

Over time
» Data-set size
» Regular expression length
» Number of (repeated) character ranges
» Number of dot-star, [^\n\r]* terms

are increasing!

Data-set # RegEx [c1..cn] . c+ string+ [c1..cn]* [^\n\r]* .* c{n} string{n} [c1..cn]{n} .{n}
Snort1 22 7 4 0 4 23 8 2 0 5 0 1
Snort2 78 3 1 0 0 202 81 18 2 0 1 0
Snort3 102 16 2 2 1 268 26 5 1 2 1 0
Snort4 468 9 14 3 7 113 468 38 0 7 11 3
Bro0.8 226 1399 0 0 0 0 0 10 0 8 0 0
Bro0.9 40 22 20 0 6 1 0 0 0 10 0 0
ClamAV 30411 0 0 0 0 0 0 1221 0 0 0 113
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Synthetic regex generation

RegEx: alternation of exact- and non-exact match 
sub-patterns, according to frequency parameters
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RE#
lengthMIN-MAX-AVG
sub-patternsEM

probabilistic seed freq[c1..ck]
freqc+
freq[\n\r]*
freq.*
freq.{n}
…RegEx

generator

Regex set
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Traffic model

Goal:
» Generate synthetic traffic traces, rule-set dependent
» Simulate different degrees of malicious activity

Observation:
» Average/good traffic: 

– limited to few low-depth states       
–high degree of locality (→ fast path)

» Bad traffic:  
–partial matches → move to higher depth
– low degree of locality (→ slow path) 

non-repetitive input streams
ideally random walks in FA
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Traffic model (cont’d)

Idea:
» pM: probability of malicious traffic
» FA based model: given pM and set of active states, what is 

the next character in the input stream?

Operation:
» At each step:

1. Forward transition w/ pM
2. Random char w/ (1- pM)

» In case (1)
– If outgoing transitions exist

Depth/active set size driven selection
– else

Random char selection 
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Memory encoding schemes
Note:
» NFA: 

– common prefixes collapsed
– at most one epsilon tx/state

» DFA: 
– default transition compression

[Kumar et al, SIGCOMM 2006]
[Becchi and Crowley, ANCS 2007]
» At most 2N state traversal to process text of length N

Encoding schemes
» Linear, bitmapped, indirect addressing
» Affects

–Memory footprint
–Cost of state traversal
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Memory footprint
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Experiments
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Parameter Values

Traffic pM 0.35, 0.55, 0.75, 0.95

Cache size 4 KB, 16KB, 64KB, 256KB

line 64B

associativity DM

hit latency 1 clock cycle

miss latency 30 clock cycles

Memory 
layout

encoding linear, 
bitmapped, 
ind. addr 32-bit 
ind. addr. 64-bit
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State traversals/input char

17

DFA
Rule-set clustering  

NFA
pM affects active set 

size  

# DFAs: 1 – 2 – 2 – 14 – 24 - 32
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Effect of state encoding
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NFA
- indirect 

addressing
preferable

- bitmap overhead 
not justified

DFA
rule-partitioning 

limiting factor

pM=0.35
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Effect of cache size
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Indirect addressing, pM=0.95

NFA
16KB cache 

sufficient

DFA
on complex rule-set 

worse than NFA 
even w/ 256KB
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Summary

Proposal of workload to evaluate (memory-centric) 
regular expression matching architectures
» Synthetic regular expression generator
» Traffic trace generator
» Memory layout generator
» Cache simulator

Model highlights:
» Performance depends on

–Rule-set size and complexity
–NFA/DFA representation
–Memory 
–Cache size

On complex rule-sets, NFA can outperform DFAs
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Thanks!

REGEX tool download: http://regex.wustl.edu
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Questions?
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Memory encoding scheme (cont’d)
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default/ε- tx

labeled tx

next addr
c1, next addr1

ck, next addrk

default/ε- tx

labeled tx

next addr

next addr1

next addrk

bitmap

Linear:

Bitmapped:

COST
input dependent
(linear traversal)

COST
- Better for 

average traffic 
- Worse for 

“matching” traffic
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Memory encoding scheme (cont’d)
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default/ε- tx

labeled tx

next state id
next state id1

next state idk

state id: 
(c1, c2, …ck; discriminator)

hash
functio

n

MEMORY
Indirect addressing:

COST
1 memory
access/state
traversal
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Automata size
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# DFAs: 1 – 2 – 2 – 14 – 24 - 32


