Empirical Examination of a Collaborative Web Application

Christopher Stewart (stewart@cs.rochester.edu), Matthew Leventi (mlventi@gmail.com), and Kai Shen (kshen@cs.rochester.edu) University of Rochester

The collaborative web application (WeBWoRK), trace, and dataset described in these slides are publicly available.

http://www.cs.rochester.edu/u/stewart/collaborative.html

Motivation

- *"Benchmarks shape a field for better or worse; they are how we determine the value of change."* -- David Patterson, 1994
- Web applications benefit from systems research
- Systems research benefits from good benchmarks
 - SPECweb for static web content
 - TPC benchmarks for databases
 - RUBiS for multi-tier services

Benchmarks for Emerging Applications

- Benchmarks must evolve
 - Previous work: Static content benchmarks did capture dynamic content workloads

[Amza-WWC-2002, Cecchet-Middleware-2003]

Open question: do dynamic content workloads capture web 2.0 workloads?

[Nagpurkar-IISWC-2008, Lim-ISCA-2008]

- This study investigates an emerging web application
 - Do existing benchmarks capture its workload properties?
 - Are systems research solutions affected by this new workload?

Collaborative Web Applications

- Multi-tier web applications comprise a handful of scripts supplied by their developers
- Facebook, Google Docs, and SalesForce are different: *They allow users to contribute content and scripts*
- The term *collaborative web application* reflects joint development between application designers and users
 - Benefit from the creativity of a large user base
 - Synonymous terms: web platform, utility

Traditional Web Application

1. Developers run code on a server

2. Users access developer-supplied functions

Collaborative Web Applications

1

- 1. Developers create a platform
- 2. Users contribute scripts

3. Users access user-supplied

Scripts

Contributor

End user

2

Evaluation of a Collaborative Web Application

- We deployed a real collaborative web application with a real dataset and real trace
 - Do existing benchmarks represent collaborative web applications?
 Compare with traditional benchmarks
 - Are research solutions affected by this emerging application?
 Reevaluate previous research with a collaborative web application

Study the characteristics of collaborative web applications

Public release of real application, dataset, and trace

Outline

1. Motivation

2. WeBWoRK: A Real Collaborative Web Application

- Introduction and Design
- Real Trace and Dataset
- Similar Emerging Applications
- 3. Comparison with Existing Benchmarks
- 4. Reevaluation of Past Research
- 5. Conclusion

Introducing WeBWoRK

- WeBWoRK is a web-based homework checker
 - Developed at the University of Rochester
 - Services 50,000 students at 80 universities worldwide
 - **Teachers** contribute problems
 - Students access problems and check answers
- Design Goals
 - Support a broad range of problem sets
 - Reduce the burden of teachers in grading
 - Ensure each student does their own work

WeBWoRK Design

- A problem is encoded in script
 - Written in Problem Generation (PG) Language
 - a variant of PERL
 - WeBWoRK is a platform that executes teacher-supplied scripts
- PG Scripts include:
 - A function that displays the problem
 - A function that checks answers
 - Number randomization to prevent copying
 - Same core problem (e.g., algebraic equations), but each student receives a unique version

Student A receives:5x = 35Student B receives:4x = 24

Real Dataset and Trace

- Real traces of end-user behavior are especially important in collaborative web applications
 - Trace collected over 3 years at the University of Rochester
 - Dataset of 3,000 teacher-supplied problems
- Redeployed on local machines in the CS department
 - 2GHz Intel XEON processor
 - ^D 2GB memory
 - Linux 2.6.10 with request context tracking [ASPLOS-2008]
 - All benchmarks run on this platform

Outline

- 1. Motivation
- 2. WeBWoRK: A Real Collaborative Web Application
- 3. Comparison with Existing Benchmarks
 - Traditional benchmarks
 - Clustering and Regularity
 - Inter-property Correlations
- 4. Reevaluation of Past Research5. Conclusion

Traditional Benchmarks RUBis

- Implements core functions of an auction website
- J2EE-based multi-component
- Realistic nonstationary workload [USENIX-2008]

TPC-C

- Terminal operators issuing order-entry transactions
- Database centric, several transaction types

SPECweb

Included in the paper

Experimental Setup

- We analyze request-level characteristics
 - A request is common unit of work
 - Request-level properties are important in research solutions

[pai-asplos-1998][urgoankar-osdi-2002][barham-osdi-2004][elinketyeurosys-2007][stewart-eurosys-2007][lim-isca-2008][soundararajanusenix-2008][stewart-usenix-2008] and many others

- Patterns in the per-request CPU usage
- Correlations between CPU usage and system calls for each request

Resource Consumption Clusters

- In RUBiS, clusters with similar CPU usage are obvious
- In WeBWoRK, no clear cluster boundaries

- In TPC-C, we observe a regular pattern in the CPU usage
 - Caused by a request type that depends on a random integer
- In WeBWoRK, there is no clear pattern in the CPU usage

Inter-property Correlation

- In RUBiS, there is a strong correlation between system calls and CPU usage
- In WeBWoRK, there is no correlation at all

Summary of Comparison with Traditional Benchmarks

- Request-level characteristics in WeBWoRK are different
 - Less clustered; more diverse CPU usage
 - Do not follow easily identifiable patterns
 - There is no correlation between properties
- These results makes sense:
 - Resource consumption depends heavily on user contributions
 - Large number of independent users injects randomness
- Do these results matter?

Outline

- 1. Motivation
- 2. WeBWoRK: A Real Collaborative Web Application
- 3. Comparison with Existing Benchmarks
- 4. Reevaluation of Past Research
 - Magpie-style Request Classification
 [OSDI-2004, ASPLOS-2008]
 - Request Mix Performance Models
 [Eurosys-2007, USENIX-2008]

5. Conclusion

Request Mix Performance Models

[stewart-eurosys-2007, stewart-usenix-2008]

- Motivation: System management--- *i.e.*, server consolidation and platform selection--- affects the bottom line of almost every firm in every industry
- *Goal:* Build performance models that can guide management for production web applications
- *Insight:* Requests of the same "type" have similar resource requirements.

Performance models parameterized by the mix and volume of request types

Application to WeBWoRK

Request mix model of CPU utilization

$$U = B_i + \sum B_j \cdot N_j -$$

Intuition: Aggregate CPU usage is a linear combination of the average usage per type

 Relative frequency of request types varies (*i.e.*, the mix is nonstationary), which allows calibration from logs of request arrivals and CPU utilization

WeBWoRK comprises three request types

- Submit problem, access problem, and submit solution
- Calibrated with nonstationary 10-hour trace
- Evaluated on the next 10-hours (prediction)

CPU utilization over time--- Each interval is 5 minutes

- Actual CPU utilization differs significantly from model based prediction
- Request mix models describe the variation in utilization for RUBiS---not for WeBWoRK

Outline

- 1. Motivation
- 2. WeBWoRK: A Real Collaborative Web Application
- 3. Comparison with Existing Benchmarks
- 4. Reevaluation of Past Research
- 5.Conclusion
 - Future Work
 - Take aways

Open Problems

- How do we deploy collaborative web applications?
 - Maximize overall performance
 - Differentiated services
- How do we deploy collaborative web applications on top of collaborative web applications?

Facebook on Amazon EC2?

- Challenges for system management
 - Performance modeling is more difficult
 - Dynamic control in constant flux
 - Integration with traditional applications--- fall back?

Take Away Points

- Collaborative web applications are not well represented by existing benchmarks
 - Request-level characteristics are more diverse and less regular
- Previous research should be revisited in the context of collaborative web applications
- Need for benchmark innovation
 As a first cut, our WeBWoRK setup is available
 http://www.cs.rochester.edu/u/stewart/collaborative.html