
1

Evaluating the Impact of 
Dynamic Binary Translation 
Systems on Hardware 
Cache Performance

Arkaitz Ruiz-Alvarez
Kim Hazelwood

University of Virginia
IISWC’08



22

Dynamic Binary Translators

Purpose: program analysis and 
modification
Applications: security, program 
instrumentation, dynamic optimization
DBTs: Dynamo, DynamoRIO, Pin, Strata, 
Valgrind
DBTs translate and execute the binary 
image of a program



3

DBT Overview

DBT changes the 
application’s:

code layout: JIT 
compiler + code cache
instructions: 

DBT overhead + 
bookkeeping ins.
1 original ins. →
multiple traces



44

Our Motivation

Icache effects:
Application speedup under Dynamo
Test this effect on current generation of DBTs

What is the impact of DBTs on:
the instruction/trace cache?
the unified L2 cache?
the locality of the application?
other structures of the microarchitecture?
overall benchmark performance?



55

Pin and DynamoRIO

DBTs that offer an instrumentation API
Both use a JIT compiler and store 
translated code in a code cache
We run them on:

Pentium 4: 32-bit with a hardware trace cache
Xeon Core 2: 64-bit with a hardware 
instruction cache

We use SPEC 2006 INT benchmarks



6

Experimental Methodology
We use hardware performance counters (PAPI and 
perfex) and simulation
Measurements:

Running time: processor cycles
Instructions executed
L1 instruction/trace cache accesses, misses
L1 data cache accesses, misses
L2 unified cache accesses, misses
Branch prediction
Locality

Graphs:
Error bars show variability across benchmark inputs
Benchmarks are ordered by Pin’s performance, fastest to slowest



Linux x86 32-bit Pentium 4 Benchmark Running Time

0

0.5

1

1.5

2

2.5

3

3.5

mcf libquan bzip2 hmmer astar h264 sjeng go omnetp gcc xalanc perl INT

Pr
oc

es
so

r 
cy

cl
es

 n
or

m
al

iz
ed

 to
 n

at
iv

e 
ru

n 

Pin

DynamoRIO



88

Execution Time

Several benchmarks show near native 
performance:

DynamoRIO: mcf, libquantum, bzip2, astar
and hmmer.
Pin: mcf, libquantum, and bzip2

We analyze the performance of the 
instruction/trace cache and other 
structures of the microarchitecture



Linux x86 32-bit Pentium 4 Trace Cache

0

1

2

3

4

5

6

7

8

mcf libquan bzip2 hmmer astar h264 sjeng go omnetpp gcc xalanc perl INT

N
or

m
al

iz
ed

 T
ra

ce
 C

ac
he

 M
is

se
s 

an
d 

A
cc

es
se

s

Pin, Accesses
Pin, Misses
DynamoRIO, Accesses

DynamoRIO, Misses



1010

Pentium 4 Trace Cache

2.5x more misses for Pin and 1.7x more for 
DynamoRIO
Only libquantum and hmmer under DynamoRIO
improve performance
Performance can get worse:

If we add instrumentation
If space for the code cache is limited

Misses are equally distributed over time for most 
of the benchmarks



Linux x86 64-bit Xeon Core 2 Instruction Fetch Unit Stalls

0%

5%

10%

15%

20%

25%

30%

35%

40%

mcf astar bzip2 libquan hmmr omnetp gcc sjeng h264 go xalanc perl INT

C
yc

le
s 

W
ith

 IF
U

 S
ta

lle
d

Native
Pin



1212

Xeon Core 2 Instruction Cache

No single benchmark improves under Pin:
Normalized miss count
Cycles in which IFU is stalled

Poor benchmark performance → poor 
instruction fetch unit performance
Pentium 4 (12K-uop) vs. Xeon Core 2 (32 Kb) 
miss counts:

Both show performance degradation
Instruction cache degradation is lower on 
Xeon Core 2 than on Pentium 4



1313

Instruction/Trace Cache

Benchmarks with good performance may 
show a significant increase in 
trace/instruction cache misses

Poor code layout?
Bigger memory footprint?
Greater number of executed instructions?



Linux x86 64-bit Pentium Xeon Core 2 Pin L1 Data Cache

0

0.5

1

1.5

2

2.5

mcf astar bzip2 libquan hmmr omntp gcc sjeng h264 go xalanc perl INT

N
or

m
al

iz
ed

 L
1 

D
at

a 
C

ac
he

L1D Accesses

L1D Misses

L1D Cycles miss outstanding



1515

L1 Data Cache

Pin does not incur additional overhead in many 
benchmarks
Average miss count increase is 8.3%
Average increase on cycles with outstanding 
misses is 2%
L1 data effects: 

More accesses to the data due to Pin’s data 
structures
Number of misses similar to native run
Pin’s accesses to data show very high locality



Linux x86 32-bit Pentium 4 Level 2 Cache

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mcf libquan bzip2 hmmer astar h264 sjeng go omnetpp gcc xalanc perl INT

L2
 C

ac
he

 A
cc

es
se

s 
an

d 
M

is
se

s

Pin, Accesses

Pin, Misses
DynamoRIO, Accesses

DynamoRIO, Misses



1717

Level 2 Cache

Pentium 4: 20 to 25% additional misses for 
DynamoRIO and Pin 
Xeon Core 2: 8% for Pin
Level 2 unified cache effects:

Additional pressure on the level 2 cache due 
to greater number of trace cache misses
No dramatic increase in number of misses
Code layout may be improved by DBTs



Linux x86 32-bit Pentium 4 Instructions Executed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

mcf libquan bzip2 hmmer astar h264 sjeng go omnetp gcc xalanc perl INT

N
or

m
al

iz
ed

 In
st

ru
ct

io
ns

 E
xe

cu
te

d

Pin

DynamoRIO



1919

Instructions Executed

Main factor that affects performance
Benchmarks that performs well under DBTs

Small binary image → less JIT compilation
Low # of indirect branches → no need to resolve 
indirect branches frequently
Long running time → amortize the compilation time by 
using a code cache

Benchmarks that perform close to native require 
light intervention from the DBT (less compilation, 
less bookkeeping overhead).



2020

Conclusions
DBTs effect on the microarchitecture (compared to 
native execution):

Hardware trace caches show a significant performance 
degradation (170% to 248%)
Hardware instruction caches also show a negative impact
The level 1 data cache performs close to native
The level 2 cache shows a less dramatic increase in miss 
count (20% to 25%) than the L1 instrucion/trace cache

In general, there are no icache effects for DBTs that 
focus on instrumentation
The layout of the code cache is not responsible for 
poor cache performance
Major factor affecting performance is the number of 
instructions executed




