
Accelerating Multi-core Processor Design Space
Evaluation Using Automatic Multi-threaded Workload

Synthesis

IDEAL Research
(Intelligent Design of Efficient Architectures Laboratory)

Electrical and Computer Engineering
University of Florida

Clay Hughes & Tao Li
Department of Electrical and Computer Engineering

University of Florida

(IISWC 2008)

Presentation By
Clay Hughes

2

Motivation

• Uni-core systems are becoming increasing rare

• Multi-threaded programming is being widely adopted

• Threaded code can take full advantage of multiple
processing elements

• Multiple threads running on multiple processing elements
is the prevalent execution paradigm for the next
generation of computer systems

3

CMP Design Space Exploration

• Relies on simulation based performance models

• Inherently more expensive than uni-core processor
– Shared/private caches, coherency protocols, interconnections,

heterogeneity of cores
– Extra simulator slow down

• Optimizes performance of multi-core oriented
applications

4

Existing Methods

• Machine Learning and Sampling
– SimPoint [Sherwood et al. 2002]
– SMARTS [Wunderlich et al. 2003]

• FPGA Acceleration
– RAMP [Wawrzynek et al. 2007]

• Statistical Simulation
– HLS [Oskin et al. 2000]
– [Nussbaum & Smith 2002]
– [Eeckhout et al. 2003]

5

Existing Methods - 2

• Synthetic Benchmarks [Bell et al. 2005]

• Capture workload characteristics at low-level

• Build representative instruction trace

• Memory and branch models

• Compilable (portability!)

6

Contributions

• Synchronized Statistical Flow Graph (SSFG)

• Thread-aware memory model

• Wavelet-based branch model

7

C
T2

D

0.7

1

1

0.3

SSFG

• SFG
– Nodes represent basic

blocks
– Edges represent transition

probabilities

• SSFG
– Separate SFG for each

thread
– Nodes contain thread-

management information
– Nodes contain

synchronization information

8

Thread-aware Memory Model
Starting
Address Stride

0 0 0 08049770

.

.

.

.

0 0 0 08049770

0 0 0 08049770

sub dword ptr [ebp-0x4],0x1

mov dword ptr [ebp+edx*0x4-0x34],eax

mov eax,dword ptr [ebp-0x8]

mov edx,dword ptr [ebp-0xc]
W

W

mov eax,dword ptr [0x8049770]

add eax,0x1

mov dword ptr [0x8049770],eax

mov edx,dword ptr [0x8049770]

SR

SR
SW

("movl %1, %%eax" :"=a"(r_outa) :"m"(shared_memInt[12]);

("movl %%eax, %0" :"=m"(memInt[53]) :"a"(r_outa));

.

.

.

.

Generate Memory
Reference From

Distrubtion

size_t myUnsigned = 7;

void * myFunction (void *ptr)
{

unsigned int i = 5;
unsigned int u_int_1 = 600;
unsigned int array_1[10] = {0};

...

...
 myUnsigned = myUnsigned + 1;
 myUnsigned = myUnsigned * 3;
 myUnsigned = myUnsigned + 10;
 u_int_1 = u_int_1 - 1;
 array_1[i] = u_int_1;
…
...
}

0 4 0 4 0 4

R
R

0 4 0 4 0 4

Write Stride

Read Stride

SR

W

9

Wavelet-based Branch Model

• Branch transitions stored as bit vectors
• Each bit vector as a time series (e.g. 1 stands for taken

and 0 represent not-taken)
• Wavelet analysis is used to extract key patterns

– 16 wavelet coefficients
– k-mean algorithm classifies branching patterns into clusters

based on their similarity

• Using a representative pattern for all branches within the
same cluster reduces the overhead of storing each
block’s branch pattern

10

Framework (High-Level)

Application Disassembler

Trace Profiler

Routine Profiler

Instruction
Profiler

SFG

Synthetic
Source Code

Synthetic
Executable

Trace Generator

Pin

Reduced SFG

Instrumentation Analysis

Identify
Children

Calculate
Edge Weights

CFG

11

Code Generation

Find Opcode

subl

Determine Operand B

%0

Determine Operand A

$0x1

Populate Variables

"=m"(memInt[50])

Mem
Access?

0 1 2 4 8 16 More

0

0.25

0.5

0.75

1

Determine Memory Type
INT

LONG LONG
FLOAT
DOUBLE

Determine Next Offset

Increment Base

Branch?

Emit New Instruction

1) Identify Cluster ID

2) Append Branch Calculation
("mov %2, %0\n\t"
"and %1, %0\n\t"
"jnz I2_46_"
:"=r"(temp), "=m"(choose)
:"m"(branch[3]));

2

3

4

1

sub dword ptr [ebp-0x4],0x1

("subl $0x1, %0" :"=m"(memInt[50]));

Mem
Access?

Thread *R-SFG

Code Generator

Choose Next
Node

Check Thread
Synchronization

Decrement
Node

Check Thread
Control

Generate
Header

Enter *R-SFG

12

Evaluation: Methods

• Workloads
– Splash-2

• Tools
– Pin
– VTune

• Platforms
Parameter Platform A Platform B Platform C

Processor Type Pentium 4 - HT Dual Core Pentium D Core 2 Quad

Memory 1024MB DDR400 4096MB DDR2-533MHz 4096MB DDR2-533MHz

Storage 80GB SATA HDD 160GB SATA HDD 180GB SATA HDD

Operating System SuSE 10.01 SuSE 10.01 SuSE 10.2

13

Evaluation: Accuracy

()
()

()
Original

Original
Original

ExecutionTime DualQuadSpeedup
Dual ExecutionTime Quad

=

 Barnes Cholesky FFT LU Ocean-C Ocean-NCWater-SP Radix Volrend (Cross Bench-
mark Error)

Original 2.26 1.75 1.26 1.67 1.23 1.63 1.73 1.84 2.73
Quad /Dual Synthetic

(Error)
2.04

(-9.8%)
1.92

(9.7%)
1.30

(3.3%)
1.53

(-8.6%)
1.1

(-10.3%)
1.53

(-6.1%)
1.63

(-5.6%)
1.74

(-5.6%)
3.05

(11.7%)

(7.9%)
Original 2.87 1.8 1.96 3.03 2.8 3.45 2.93 2.28 3.92

Quad /HT Synthetic
(Error)

2.87
(0%)

1.98
(10%)

2.12
(8.5%)

2.64
(-12.9%)

2.84
(1.3%)

2.95
(-14.4%)

2.93
(0%)

2.41
(5.5%)

4.14
(5.6%)

(6.5%)

Original 1.27 1.02 1.55 1.82 2.28 2.12 1.7 1.24 1.44

Dual /HT Synthetic
(Error)

1.41
(11%)

1.03
(0.3%)

1.63
(5%)

1.73
(-4.7%)

2.57
(12.9%)

1.93
(-8.8%)

1.8
(5.7%)

1.38
(11.8%)

1.36
(-5.6%)

(7.3%)

 (Cross Platform
Error) (6.9%) (6.7%) (5.6%) (8.7%) (8.2%) (9.8%) (3.8%) (7.6%) (7.6%)

14

Evaluation: Efficiency

Barnes Cholesky FFT LU Ocean-C Ocean-
NC

Water-
SP Radix Volrend

HT
2-Thread 30 24 7 10 34 25 413 4 252

4-Thread 290 145 15 9 21 15 335 12 357

Dual
2-Thread 30 21 8 9 32 26 356 4 286

4-Thread 261 144 14 9 19 17 316 11 378

Quad
2-Thread 33 19 8 9 31 23 340 4 317

4-Thread 236 158 14 8 17 16 298 10 422

()
()

Original

Synthetic

Runtime s
Runtime s

15

Evaluation: Microarchitecture Events

• Maximum CPI error is 12% for 4-thread
• Maximum branch prediction error is 4%

0

0.5

1

1.5

2

2.5

3

3.5

Barn
es

Cho
les

ky FFT LU
Oce

an
-C

Oce
an

-N
C

Wate
r-S

P
Rad

ix
Volr

en
d

C
PI

Original Synthetic

95

96

97

98

99

100

Barn
es

Cho
les

ky FFT LU
Oce

an
-C

Oce
an

-N
C

Wate
r-S

P
Rad

ix
Volr

en
d

B
ra

nc
h

Pr
ed

ic
tio

n
A

cc
ur

ac
y Original Synthetic

16

Evaluation: Cache Performance

0%

20%

40%

60%

80%

100%

ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN ORG SYN

Barnes Cholesky FFT LU Ocean-C Ocean-NC Water-SP Radix Volrend

L2
 A

ce
ss

 B
re

ak
do

w
n

Modified Exclusive Shared Invalid

90

92

94

96

98

100

Bar
ne

s
Cho

les
ky

FF
T LU

Oce
an

-C
Oce

an
-N

C
W

at
er

-S
P

Rad
ix

Vo
lre

nd
C

ac
he

 H
it

R
at

e
(%

)

Original L1 Synthetic L1
Original L2 Synthetic L2

• Maximum cache hit error is 7%

17

Evaluation: Multi-Core Events

• Locked Operations Impact
– Measures the penalty caused by locked operations

• Modified Data Sharing Ratio
– Measures the frequency of modified data sharing due to two

threads using and modifying data in one cache line

• Data Snoop Ratio
– Measures how often a cache is snooped by an adjacent

processing element or an external one

18

Evaluation: Multi-Core Events (2)

Barnes Cholesky FFT LU Ocean-C Ocean-NC Water-SP Radix Volrend

Locked Operations
Impact

Original 0.17% 1.27% 0.82% 0.25% 2.22% 2.62% 0.08% 0.64% 2.3%

Synthetic
Error

3.5% 17.6% -3.2% 6.6% -3.2% 9.2% -11.4% -2.7% 11.7%

Modified Data
Sharing Ratio
per 1k Instructions

Original 0.24 0.27 0.17 0.1 0.02 3.1 0.18 0.23 0.23

Synthetic
Error

-3.5% 11.6% 7.7% -10% 1% -9.2% 4.4% 2.6% 5.6%

Data Snoop Ratio
per 1k Instructions

Original 21 14 46 9 55 75 3 23 3

Synthetic
Error

-7% -4.8% -7.7% 13.2% 3.5% 6.8% -3.4% -1.6% -5.6%

19

Summary

• Multi-core design space is time consuming
– Joint-optimal designs

• Previous methods suited mostly for single-threaded
applications and single PEs

• Synchronized statistical flow graphs allow for multi-
threaded synthetic code generation

• Thread-aware memory model

• Wavelet-based branch model

20

Conclusions

• Preserve high-level program characteristics

• Preserve micro-architecture events

• Preserve complex memory operations

• Reduce runtime by one to two orders

21

On-going and Future Work

• Support for additional threading/sharing protocols
– OpenMP
– HPC

• UPC
• MPI

• Support for additional ISAs
– PowerPC
– MIPS

• Extend to simulation environment
– SESC
– PTLSim

• Commercial and server workload evaluation

22

Questions

23

SSFG Example

24

Evaluation: Instruction Mix

• Some instructions merged (calls branches)

Synthetic Original

