Accelerating Multi-core Processor Design Space Evaluation Using Automatic Multi-threaded Workload Synthesis

> Clay Hughes & Tao Li Department of Electrical and Computer Engineering University of Florida

> > (IISWC 2008)

Presentation By Clay Hughes

IDEAL Research (Intelligent Design of Efficient Architectures Laboratory) Electrical and Computer Engineering University of Florida

Motivation

- Uni-core systems are becoming increasing rare
- Multi-threaded programming is being widely adopted
- Threaded code can take full advantage of multiple processing elements
- Multiple threads running on multiple processing elements is the prevalent execution paradigm for the next generation of computer systems

CMP Design Space Exploration

- Relies on simulation based performance models
- Inherently more expensive than uni-core processor
 - Shared/private caches, coherency protocols, interconnections, heterogeneity of cores
 - Extra simulator slow down
- Optimizes performance of multi-core oriented applications

Existing Methods

- Machine Learning and Sampling
 - SimPoint [Sherwood et al. 2002]
 - SMARTS [Wunderlich et al. 2003]
- FPGA Acceleration
 - RAMP [Wawrzynek et al. 2007]
- Statistical Simulation
 - HLS [Oskin et al. 2000]
 - [Nussbaum & Smith 2002]
 - [Eeckhout et al. 2003]

Existing Methods - 2

- Synthetic Benchmarks [Bell et al. 2005]
- Capture workload characteristics at low-level
- Build representative instruction trace
- Memory and branch models
- Compilable (portability!)

Contributions

- Synchronized Statistical Flow Graph (SSFG)
- Thread-aware memory model
- Wavelet-based branch model

SSFG

- SFG
 - Nodes represent basic blocks
 - Edges represent transition probabilities
- SSFG
 - Separate SFG for each thread
 - Nodes contain threadmanagement information
 - Nodes contain synchronization information

Thread-aware Memory Model

Wavelet-based Branch Model

- Branch transitions stored as bit vectors
- Each bit vector as a time series (e.g. 1 stands for taken and 0 represent not-taken)
- Wavelet analysis is used to extract key patterns
 - 16 wavelet coefficients
 - k-mean algorithm classifies branching patterns into clusters based on their similarity
- Using a representative pattern for all branches within the same cluster reduces the overhead of storing each block's branch pattern

Framework (High-Level)

Code Generation

Evaluation: Methods

- Workloads
 - Splash-2
- Tools
 - Pin
 - VTune
- Platforms

Parameter	Platform A	Platform B	Platform C		
Processor Type	Pentium 4 - HT	Dual Core Pentium D	Core 2 Quad		
Memory	1024MB DDR400	4096MB DDR2-533MHz	4096MB DDR2-533MHz		
Storage	80GB SATA HDD	160GB SATA HDD	180GB SATA HDD		
Operating System	SuSE 10.01	SuSE 10.01	SuSE 10.2		

Evaluation: Accuracy

$$Speedup(\frac{Quad}{Dual})_{Original} = \frac{ExecutionTime(Dual)_{Original}}{ExecutionTime(Quad)_{Original}}$$

		Barnes	Cholesky	FFT	LU	Ocean-C	Ocean-NC	Water-SP	Radix	Volrend	(Cross Bench- mark Error)
	Original	2.26	1.75	1.26	1.67	1.23	1.63	1.73	1.84	2.73	
Quad /Dual	Synthetic	2.04	1.92	1.30	1.53	1.1	1.53	1.63	1.74	3.05	
	(Error)	(-9.8%)	(9.7%)	(3.3%)	(-8.6%)	(-10.3%)	(-6.1%)	(-5.6%)	(-5.6%)	(11.7%)	(7.9%)
	Original	2.87	1.8	1.96	3.03	2.8	3.45	2.93	2.28	3.92	
Quad /HT	Synthetic	2.87	1.98	2.12	2.64	2.84	2.95	2.93	2.41	4.14	
	(Error)	(0%)	(10%)	(8.5%)	(-12.9%)	(1.3%)	(-14.4%)	(0%)	(5.5%)	(5.6%)	(6.5%)
	Original	1.27	1.02	1.55	1.82	2.28	2.12	1.7	1.24	1.44	
Dual /HT	Synthetic	1.41	1.03	1.63	1.73	2.57	1.93	1.8	1.38	1.36	
	(Error)	(11%)	(0.3%)	(5%)	(-4.7%)	(12.9%)	(-8.8%)	(5.7%)	(11.8%)	(-5.6%)	(7.3%)
	(Cross Platform Error)	(6.9%)	(6.7%)	(5.6%)	(8.7%)	(8.2%)	(9.8%)	(3.8%)	(7.6%)	(7.6%)	

Evaluation: Efficiency

 $\frac{Runtime_{Original}(s)}{Runtime_{Synthetic}(s)}$

		Barnes	Cholesky	FFT	LU	Ocean-C	Ocean- NC	Water- SP	Radix	Volrend
IIT	2-Thread	30	24	7	10	34	25	413	4	252
HI	4-Thread	290	145	15	9	21	15	335	12	357
Dual	2-Thread	30	21	8	9	32	26	356	4	286
	4-Thread	261	144	14	9	19	17	316	11	378
Quad	2-Thread	33	19	8	9	31	23	340	4	317
	4-Thread	236	158	14	8	17	16	298	10	422

Evaluation: Microarchitecture Events

- Maximum CPI error is 12% for 4-thread
- Maximum branch prediction error is 4%

Evaluation: Cache Performance

• Maximum cache hit error is 7%

Evaluation: Multi-Core Events

- Locked Operations Impact
 - Measures the penalty caused by locked operations
- Modified Data Sharing Ratio
 - Measures the frequency of modified data sharing due to two threads using and modifying data in one cache line
- Data Snoop Ratio
 - Measures how often a cache is snooped by an adjacent processing element or an external one

Evaluation: Multi-Core Events (2)

		Barnes	Cholesky	FFT	LU	Ocean-C	Ocean-NC	Water-SP	Radix	Volrend
Locked Operations Impact	Original	0.17%	1.27%	0.82%	0.25%	2.22%	2.62%	0.08%	0.64%	2.3%
	Synthetic Error	3.5%	17.6%	-3.2%	6.6%	-3.2%	9.2%	-11.4%	-2.7%	11.7%
Modified Data Sharing Ratio per 1k Instructions	Original	0.24	0.27	0.17	0.1	0.02	3.1	0.18	0.23	0.23
	Synthetic Error	-3.5%	11.6%	7.7%	-10%	1%	-9.2%	4.4%	2.6%	5.6%
Data Snoop Ratio per 1k Instructions	Original	21	14	46	9	55	75	3	23	3
	Synthetic Error	-7%	-4.8%	-7.7%	13.2%	3.5%	6.8%	-3.4%	-1.6%	-5.6%

Summary

- Multi-core design space is time consuming
 - Joint-optimal designs
- Previous methods suited mostly for single-threaded applications and single PEs
- Synchronized statistical flow graphs allow for multithreaded synthetic code generation
- Thread-aware memory model
- Wavelet-based branch model

Conclusions

- Preserve high-level program characteristics
- Preserve micro-architecture events
- Preserve complex memory operations
- Reduce runtime by one to two orders

On-going and Future Work

- Support for additional threading/sharing protocols
 - OpenMP
 - HPC
 - UPC
 - MPI
- Support for additional ISAs
 - PowerPC
 - MIPS
- Extend to simulation environment
 - SESC
 - PTLSim
- Commercial and server workload evaluation

Questions

SSFG Example

EARCH

3086891588

Evaluation: Instruction Mix

ADD .	PUSH
POP	E OR
ADC	SBB
AND	■ SUB
VOR	I CMP
	DEC
IMUL	🗖 JB
INB	■.17
IN7	ID IDE
LIJNDE	U JS
■ JNS	∎JL
□.INI	D.II F
	TECT
XCHG	
LEA	SAHF
■ MOVSB	■ MOVSW/
E MOVED	E CHIDER
■ 10/0 ¥ 3D	
■ STOSE	■ STOSD
RET_NEAR	LEAVE
INT.	IncV7
CALL_NEAR	LI JMP
CLD CLD	■ STD
RDTSC	CMOVE
E CMOV/NB	E CMOV7
CMOVNZ	CMOARE
CMOVNBE	SETB
SET7	SETN7
LI SHLU	
III MOVZX	CMOVS
CMOVNS	CMOVLE
© CMOVNEE	SETNI E
m DTC	I CUPD
BDIS	∎ SHRU
BSF	BSR
MOVSX	I SHI
IN SHR	MSAR
BNOT	
■ NOT	INEG I
MUL	□ DIV
IDIV	EADD
I EMU	RECOMP
BESUB	E FDIV
🖬 FLD	III FST
ESTP	EXCH
m FABS	m FLD7
	m FOOD
B F SIN	BECOS
■ FUCOMPP	🖬 FILD
■ ENSTSW	■ FLICOM
RELICOMD	READDD
	MFAUUP
I FMULP	⊠ FSUBRP
■ FSUBP	EDIVRP
@ FDIVP	
MIL DIVIE	

• Some instructions merged (calls \rightarrow branches)

