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Motivation

• Uni-core systems are becoming increasing rare

• Multi-threaded programming is being widely adopted

• Threaded code can take full advantage of multiple 
processing elements

• Multiple threads running on multiple processing elements 
is the prevalent execution paradigm for the next 
generation of computer systems
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CMP Design Space Exploration

• Relies on simulation based performance models

• Inherently more expensive than uni-core processor
– Shared/private caches, coherency protocols, interconnections, 

heterogeneity of cores 
– Extra simulator slow down

• Optimizes performance of multi-core oriented 
applications
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Existing Methods

• Machine Learning and Sampling
– SimPoint [Sherwood et al. 2002]
– SMARTS [Wunderlich et al. 2003]

• FPGA Acceleration
– RAMP [Wawrzynek et al. 2007]

• Statistical Simulation
– HLS [Oskin et al. 2000]
– [Nussbaum & Smith 2002]
– [Eeckhout et al. 2003]
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Existing Methods - 2

• Synthetic Benchmarks [Bell et al. 2005]

• Capture workload characteristics at low-level

• Build representative instruction trace

• Memory and branch models

• Compilable (portability!)
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Contributions

• Synchronized Statistical Flow Graph (SSFG)

• Thread-aware memory model

• Wavelet-based branch model
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• SFG 
– Nodes represent basic 

blocks
– Edges represent transition 

probabilities

• SSFG
– Separate SFG for each 

thread
– Nodes contain thread-

management information
– Nodes contain 

synchronization information
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Thread-aware Memory Model
Starting 
Address Stride

0 0 0 08049770

.

.

.

.

0 0 0 08049770

0 0 0 08049770

sub     dword ptr [ebp-0x4],0x1

mov     dword ptr [ebp+edx*0x4-0x34],eax

mov     eax,dword ptr [ebp-0x8]

mov     edx,dword ptr [ebp-0xc]
W

W

mov     eax,dword ptr [0x8049770]

add     eax,0x1

mov     dword ptr [0x8049770],eax

mov     edx,dword ptr [0x8049770]

SR

SR
SW

("movl %1, %%eax"  :"=a"(r_outa) :"m"( shared_memInt[12] );

("movl %%eax, %0"  :"=m"(memInt[53]) :"a"(r_outa)  );

.

.

.

.

Generate Memory 
Reference From 

Distrubtion

size_t myUnsigned = 7;

void * myFunction (void *ptr)
{

unsigned int i = 5;
unsigned int u_int_1 = 600;
unsigned int array_1[10] = {0};

...

...
   myUnsigned =  myUnsigned + 1;
   myUnsigned =  myUnsigned * 3;
   myUnsigned =  myUnsigned + 10;
   u_int_1 = u_int_1 - 1;
   array_1[i] = u_int_1;
…
...
}

0 4 0 4 0 4

R
R

0 4 0 4 0 4

Write Stride

Read Stride

SR

W
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Wavelet-based Branch Model

• Branch transitions stored as bit vectors
• Each bit vector as a time series (e.g. 1 stands for taken 

and 0 represent not-taken) 
• Wavelet analysis is used to extract key patterns

– 16 wavelet coefficients
– k-mean algorithm classifies branching patterns into clusters 

based on their similarity

• Using a representative pattern for all branches within the 
same cluster reduces the overhead of storing each 
block’s branch pattern
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Framework (High-Level)

Application Disassembler

Trace Profiler

Routine Profiler

Instruction 
Profiler

SFG

Synthetic
Source Code

Synthetic
Executable

Trace Generator

Pin

Reduced SFG

Instrumentation Analysis

Identify
Children

Calculate
Edge Weights

CFG
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Code Generation

 

 
 
 

 

 
 
 

 

 

 

 

 

Find Opcode

subl

Determine Operand B

%0

Determine Operand A

$0x1

Populate Variables

"=m"(memInt[50])

Mem
Access?

0 1 2 4 8 16 More

0

0.25

0.5

0.75

1

Determine Memory Type
INT

LONG LONG
FLOAT
DOUBLE

Determine Next Offset

Increment Base

Branch?

Emit New Instruction

1) Identify Cluster ID

2) Append Branch Calculation
("mov %2, %0\n\t"
"and %1, %0\n\t"
"jnz   I2_46_"
:"=r"(temp), "=m"(choose)
:"m"(branch[3]) );

2

3

4

1

sub     dword ptr [ebp-0x4],0x1

("subl $0x1, %0"  :"=m"(memInt[50])  );

Mem
Access?

Thread *R-SFG

Code Generator

Choose Next 
Node

Check Thread 
Synchronization

Decrement 
Node

Check Thread 
Control

Generate 
Header

Enter *R-SFG

 



12

Evaluation:  Methods

• Workloads
– Splash-2

• Tools
– Pin
– VTune

• Platforms
Parameter Platform A Platform B Platform C

Processor Type Pentium 4 - HT Dual Core Pentium D Core 2 Quad

Memory 1024MB DDR400 4096MB DDR2-533MHz 4096MB DDR2-533MHz

Storage 80GB SATA HDD 160GB SATA HDD 180GB SATA HDD

Operating System SuSE 10.01 SuSE 10.01 SuSE 10.2
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Evaluation:  Accuracy

( )
( )

( )
Original

Original
Original

ExecutionTime DualQuadSpeedup
Dual ExecutionTime Quad

=

  Barnes Cholesky FFT LU Ocean-C Ocean-NCWater-SP Radix Volrend (Cross Bench- 
mark Error) 

Original 2.26 1.75 1.26 1.67 1.23 1.63 1.73 1.84 2.73  
Quad /Dual Synthetic 

(Error) 
2.04 

(-9.8%) 
1.92

(9.7%)
1.30

(3.3%)
1.53

(-8.6%)
1.1

(-10.3%)
1.53

(-6.1%)
1.63

(-5.6%)
1.74

(-5.6%)
3.05

(11.7%)
 

(7.9%) 
Original 2.87 1.8 1.96 3.03 2.8 3.45 2.93 2.28 3.92  

Quad /HT Synthetic 
(Error) 

2.87
(0%)

1.98
(10%)

2.12
(8.5%)

2.64
(-12.9%)

2.84
(1.3%)

2.95
(-14.4%)

2.93
(0%)

2.41
(5.5%)

4.14
(5.6%)

 
(6.5%) 

Original 1.27 1.02 1.55 1.82 2.28 2.12 1.7 1.24 1.44  

Dual /HT Synthetic 
(Error) 

1.41 
(11%) 

1.03
(0.3%)

1.63
(5%)

1.73
(-4.7%)

2.57
(12.9%)

1.93
(-8.8%)

1.8
(5.7%)

1.38
(11.8%)

1.36
(-5.6%)

 
(7.3%) 

 (Cross Platform 
Error)  (6.9%) (6.7%) (5.6%) (8.7%) (8.2%) (9.8%) (3.8%) (7.6%) (7.6%)  
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Evaluation:  Efficiency

Barnes Cholesky FFT LU Ocean-C Ocean-
NC

Water-
SP Radix Volrend

HT
2-Thread 30 24 7 10 34 25 413 4 252

4-Thread 290 145 15 9 21 15 335 12 357

Dual
2-Thread 30 21 8 9 32 26 356 4 286

4-Thread 261 144 14 9 19 17 316 11 378

Quad
2-Thread 33 19 8 9 31 23 340 4 317

4-Thread 236 158 14 8 17 16 298 10 422

( )
( )

Original

Synthetic

Runtime s
Runtime s
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Evaluation:  Microarchitecture Events

• Maximum CPI error is 12% for 4-thread
• Maximum branch prediction error is 4%
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Evaluation:  Cache Performance
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• Maximum cache hit error is 7%
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Evaluation:  Multi-Core Events

• Locked Operations Impact
– Measures the penalty caused by locked operations

• Modified Data Sharing Ratio
– Measures the frequency of modified data sharing due to two 

threads using and modifying data in one cache line

• Data Snoop Ratio
– Measures how often a cache is snooped by an adjacent 

processing element or an external one
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Evaluation:  Multi-Core Events (2)

Barnes Cholesky FFT LU Ocean-C Ocean-NC Water-SP Radix Volrend

Locked Operations
Impact

Original 0.17% 1.27% 0.82% 0.25% 2.22% 2.62% 0.08% 0.64% 2.3%

Synthetic
Error

3.5% 17.6% -3.2% 6.6% -3.2% 9.2% -11.4% -2.7% 11.7%

Modified Data 
Sharing Ratio
per 1k Instructions

Original 0.24 0.27 0.17 0.1 0.02 3.1 0.18 0.23 0.23

Synthetic
Error

-3.5% 11.6% 7.7% -10% 1% -9.2% 4.4% 2.6% 5.6%

Data Snoop Ratio
per 1k Instructions

Original 21 14 46 9 55 75 3 23 3

Synthetic
Error

-7% -4.8% -7.7% 13.2% 3.5% 6.8% -3.4% -1.6% -5.6%
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Summary

• Multi-core design space is time consuming
– Joint-optimal designs

• Previous methods suited mostly for single-threaded 
applications and single PEs

• Synchronized statistical flow graphs allow for multi-
threaded synthetic code generation

• Thread-aware memory model

• Wavelet-based branch model
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Conclusions

• Preserve high-level program characteristics

• Preserve micro-architecture events

• Preserve complex memory operations

• Reduce runtime by one to two orders
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On-going and Future Work

• Support for additional threading/sharing protocols
– OpenMP
– HPC

• UPC
• MPI

• Support for additional ISAs
– PowerPC
– MIPS

• Extend to simulation environment
– SESC
– PTLSim

• Commercial and server workload evaluation
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Questions
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SSFG Example
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Evaluation:  Instruction Mix

• Some instructions merged (calls branches)

Synthetic Original


