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Motivation
Simulating multi-threaded shared-memory 
workloads is important for evaluating current and 
future multi-core processors

Problem: Runs across different configurations are 
nondeterministic [Alameldeen’03, Lepak’03]

Locks are acquired in different order
Unprotected shared-memory accesses

One can’t compare two runs of the same 
benchmark directly
→ Change in micro-arch simulated or execution path taken?
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Dealing With Non-Determinism

1. Run multiple simulations for each studied 
configuration [Alameldeen’03]

Needs random perturbation for each run 
Average behavior per configuration
Cost: multiple runs

2. Force deterministic behavior so that one run in 
each configuration is performed [Lepak’03, this paper]

Same execution paths 
Cost: some loss in fidelity
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Contributions
Focus on reproducible user-level simulation 
of multi-threaded workloads for multi-core

1. Binary instrumentation tool to collect 
logs for deterministic simulation 

Easy of use: trace in the same environment

2. Improved methodology to compare 
deterministic simulation results

Better speed-up estimates than prior method
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The Approach and Outline
Remove non-determinism by constraining the 
order of shared memory updates

Allows variability of execution-driven simulation but fixed 
order of shared-memory updates
Execution paths are the same across simulations on 
different configurations

1. How we collect 
the checkpoints

3. How we compare
the results

Checkpoints
Config1

Config2

Simulator

Compare
resultsWorkload

logging
tool

2. Simulator changes
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Collecting User-level Checkpoints
Use our prior pin-based logging tool to collect 
user-level checkpoints [Sigmetrics’06]

Reproducible simulation of single-threaded programs
Automatically records registers and memory side-
effects of system calls, DMA transfers and 
asynchronous interrupts

INPUT Application

logger

PIN

LOGS
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Capturing Multi-Threaded Behavior
Capture shared-memory update order 

(RAW/WAR/WAW) 
How to detect: Emulate a directory structure
What to log: Use standard Netzer transitive optimization

X: X: WaWa

Y: RaY: Ra
T2 logs:T2 logs:
(Y, T1, X)(Y, T1, X)

T1T1 T2T2

Shared memoryShared memory
order log entryorder log entry
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Reproducible Simulation 
Modified Intel’s ASIM simulator to consume checkpoints
Force same sequence of shared-memory updates by 
artificially stalling threads

These are called synchronization stalls

X: X: WaWa

Y: RaY: Ra

T1T1 T2T2cyclescycles
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Logged executionLogged execution

T2 log: (Y, T1, X)T2 log: (Y, T1, X)

““artificiallyartificially
stalledstalled”” T2 T2 
for 2 cyclesfor 2 cycles
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cyclescycles
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Handling System Calls 
During logging, while a system call is executing, 
other threads make progress
During simulation, system calls execute in zero 
time

T1 T2

Time spent
on system
call

b1

b2

Logged execution

a1

a2

T1 T2

b1

b2

During simulation

a1
a2
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Handling System Calls 
During logging, while a system call is executing, 
other threads make progress
During simulation, system calls execute in zero 
time

T1 T2

Time spent
on system
call
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b2

Logged execution

T1 T2
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b2

During simulation

stall
before
syscall

stall 
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syscall
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Synchronization Stalls

During simulation sync. stalls result from:
Shared-memory dependencies
System-Call

Introduced to guarantee reproducible 
behavior across simulation runs

Would not naturally occur in the execution

Need to track and account for the stalls 
when predicting performance 
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Tracking Synchronization Stalls
During simulation, an instruction with a 
shared-memory dependency is artificially 
stalled if:

1. All dependencies imposed by the model 
were met

2. Shared-memory dependencies are NOT 
satisfied.
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Source of Synchronization Stalls
Goal is to compare two simulated architectural 
configurations

Behavior recorded in the machine where the checkpoints 
were collected

For one simulated configuration, sync. stalls come 
from difference in behavior between the 
checkpointed and simulated machines

Error/slowdown (in terms of stalls) introduced

Config1
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loggerWorkload
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Evaluation Methodology
Collected 4-threaded checkpoints of SpecOMP2001

10 checkpoints per program with ±300 million instruction each
Collected uniformly on a 4 CPU Intel Xeon machine

Simulated hypothetical 4-core x86 processor varying cache 
configuration per core:

L1 I/D 64KB, 8-way, 64 byte line size
L2 Unified 512KB, 8-way, 64 byte line size

Config2

L1 I/D 16KB, 8-way, 64 byte line size
L2 Unified 128KB, 8-way, 64 byte line size 

Config1

L1 I/D 32KB, 8-way, 64 byte line size
L2 Unified 256KB, 8-way, 64 byte line size

Baseline

DescriptionConfiguration
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Synchronization Stalls: Baseline

Synchronization stalls due to difference between logged and 
simulated baseline behavior
Average of 10.7%, from which 6.5% are system call stall
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Synchronization Stalls Across 
Configurations

After simulating different configurations, number of 
stalls is different for each simulation
Some sync. stalls are common across simulations

Differences between checkpointed behavior and the 
behavior in each configuration
Common error introduced in the simulation

Config1 Config2

Workload
checkpoint

sy
n

c.
 s
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s
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n
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 s
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Other sync. stalls are due to 
differences across configurations

Error not common across the runs

common
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Finding Common Synchronization Stalls
Each simulation run generates a stall-trace

Each entry is a tuple: (tid, instruction count, #stall cycles)

Across runs, we identify and match stalls generated 
for the same events

Other sync. stalls are due to changes in architectural 
configuration

Y

2 sync. stalls

4 sync. stalls

cfg1
T1 T2

X

cfg2
T1 T2

Y

Y

YX
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Stalls Across Configurations Results

ammp shows more change in behavior across the configurations
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Comparing Samples 

IP
C

IPC with no sync. 
stalls  (IPCNO-STALLS)

IPC with 
uncommon
sync. stalls 
(IPCUC-STALLS)

config1 config2

After simulating two samples, how to compute 
performance estimate?

For each thread we 
compute two IPCs:

One with the uncommon 
sync. stalls
And one without them

Use the two IPCs to 
compute a range of 
possible speed-ups
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Estimating Performance 
IPCNO-STALL with no uncommon stalls
IPCUC-STALL with uncommon stalls

Use the IPCs to compute a range of possible 
speed-ups for the sample
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Comparison to Prior Work
Lepak et al [PACT’03] proposed full-system 
deterministic simulation

1. Logs are collected using full-system simulator 
Impractical for large applications, can be hard to port 
application to simulation environment

2. No matching of stalls to compute performance 
estimates

Results in larger speed-up ranges
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Weighted Speed-Up Estimates

prior – equivalent to previous work, where no matching of 
sync. stalls across runs is performed
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Limitations
Shared-memory update order is fixed

Not fair to evaluate design changes that require different 
order of shared memory accesses

If the number of 
synchronization stalls is too 
high, results are not 
conclusive (case 3)
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Summary & Future Work
Checkpointing mechanism for deterministic 
simulation of multi-threaded workloads on multi-
cores

Technique to provide performance estimates when 
using deterministic simulation

Match common stalls across runs

Future Work
How the technique scales with more thread than cores 
How the technique can be integrated with representative 
sampling techniques such as Simpoint
Validate baseline against hardware numbers
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Thank You
Email: cristiano.l.pereira@intel.com
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Back-up
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More Detailed Breakdown
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Varying RS/ROB sizes
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Additional Statistics
Shared Memory Dependencies

On average 1 shared-memory dependency per 
70k instructions
10% generate stalls

Checkpoint collection:
30x slowdown to collect checkpoints
Average log size: 14KB/million instructions


