Reproducible Simulation of Multi-
Threaded Workloads for Architecture
Design Exploration

Cristiano Pereira (Intel Corporation & UCSD)
Harish Patil (Intel Corporation)
Brad Calder (Microsoft Corporation & UCSD)

11ISWC’08, Seattle, WA

Motivation

O Simulating multi-threaded shared-memory
workloads is important for evaluating current and
future multi-core processors

O Problem: Runs across different configurations are
nondeterministic [Alameldeen’03, Lepak’03]

= Locks are acquired in different order
= Unprotected shared-memory accesses

O One can’t compare two runs of the same
benchmark directly
- Change in micro-arch simulated or execution path taken?

2

Dealing With Non-Determinism

1. Run multiple simulations for each studied
configuration [Alameldeen’03]
m Needs random perturbation for each run
m Average behavior per configuration
m Cost: multiple runs

2. Force deterministic behavior so that one run In
each configuration is performed [Lepak’03, this paper]
m Same execution paths
m Cost: some loss in fidelity

Contributions

O Focus on reproducible user-level simulation
of multi-threaded workloads for multi-core

1. Binary instrumentation tool to collect
logs for deterministic simulation

m Easy of use: trace in the same environment

2. Improved methodology to compare
deterministic simulation results

m Better speed-up estimates than prior method

The Approach and Outline

O Remove non-determinism by constraining the
order of shared memory updates

= Allows variability of execution-driven simulation but fixed
order of shared-memory updates

m EXxecution paths are the same across simulations on
different configurations

Simulator
: 7| Configl

Workload —{ 1999 Y\ |1 ckpoints
oreioa tool b ~ Config2

/

1. How we collect 5 simulator changes 3. How we compare
the checkpoints the results

Collecting User-level Checkpoints

O Use our prior pin-based logging tool to collect

user-level checkpoints [Sigmetrics’06]

m Reproducible simulation of single-threaded programs
= Automatically records registers and memory side-

effects of system calls, DMA transfers and
asynchronous interrupts

PIN

INPUT __, Application

logger

LOGS

Capturing Multi-Threaded Behavior

O Capture shared-memory update order
(RAW/WAR/WAW)
= How to detect: Emulate a directory structure
= What to log: Use standard Netzer transitive optimization

Program execution

T2 logs:
(Y, T1, X)

ﬁ

Shared memory
order log entry

Reproducible Simulation

O Modified Intel’s ASIM simulator to consume checkpoints

O Force same sequence of shared-memory updates by
artificially stalling threads

Logged execution During simulation

cycles Tl 2 cycles ™ T2
o I U 0
1 WX-Wal T 1 Ty Al
o TN 2 1 'x- wa. Y:Rag }“artificially
T | — 3 T S~ stalled” T2
a4 TN T BaA T a4 | for 2 cycles
B | B |

T2 log: (Y, T1, X)

These are called synchronization stalls

Handling System Calls

o During logging, while a system call is executing,
other threads make progress

O During simulation, system calls execute in zero

time
Logged execution During simulation
Tl T2 T1 T2
al
ralgoe e bl a2l bl
Time spent
on system <
call
A2 oo b2 Hb2

Handling System Calls

o During logging, while a system call is executing,
other threads make progress

O During simulation, system calls execute in zero

time
Logged execution During simulation
T1 T2 T1 T2
_ stall -
before g1
FAL g bl syscall T "bl
Time spent
on system < stall
call after
a2k b2 syscall gof—m b2

10

Synchronization Stalls

0 During simulation sync. stalls result from:
m Shared-memory dependencies
= System-Call

O Introduced to guarantee reproducible
behavior across simulation runs

> Would not naturally occur in the execution

0 Need to track and account for the stalls
when predicting performance

11

Tracking Synchronization Stalls

O During simulation, an instruction with a
shared-memory dependency is artificially
stalled If:

1. All dependencies imposed by the model
were met

2. Shared-memory dependencies are NOT
satisfied.

12

Source of Synchronization Stalls

O Goal is to compare two simulated architectural
configurations
= Behavior recorded in the machine where the checkpoints

were collected

O For one simulated configuration, sync. stalls come
from difference in behavior between the
checkpointed and simulated machines
= Error/slowdown (in terms of stalls) introduced

{\Norkload]— logger » Configl /™ I

sync. stalls

13

Evaluation Methodology

O Collected 4-threaded checkpoints of SpecOMP2001
m 10 checkpoints per program with =300 million instruction each
m Collected uniformly on a 4 CPU Intel Xeon machine

O Simulated hypothetical 4-core x86 processor varying cache
configuration per core:

Configuration Description
Baseline L1 I/D 32KB, 8-way, 64 byte line size

L2 Unified 256KB, 8-way, 64 byte line size
Configl L1 I/D 16KB, 8-way, 64 byte line size

L2 Unified 128KB, 8-way, 64 byte line size
Config2 L1 I/D 64KB, 8-way, 64 byte line size

L2 Unified 512KB, 8-way, 64 byte line size

14

Synchronization Stalls: Baseline

M shared memory O system call

20%
18%
16% -
14% -
12%
10%

8%

6% -

4%
0% [I

Q \% o NiZ ’bé e
o 29° T a® e o°

% of synchronization cycles breakdowi

@ e
09““\6 ?ﬂe(a@
Q

O Synchronization stalls due to difference between logged and
simulated baseline behavior

O Average of 10.7%, from which 6.5% are system call stall

15

Synchronization Stalls Across
Conﬁgurations

O After simulating different configurations, number of
stalls i1s different for each simulation

O Some sync. stalls are common across simulations

m Differences between checkpointed behavior and the
behavior in each configuration L

_ _ _ _ Workload
= Common error introduced in the simulation heckpoin

v

O Other sync. stalls are due to
differences across configurations

@)

@)

=
Q

=

Config2

<«

sync. stalls

® Error not common across the runs

}

»
>

ync. stalls

16

Finding Common Synchronization Stalls

o Each simulation run generates a stall-trace
m Each entry is a tuple: (tid, instruction count, #stall cycles)

O Across runs, we identify and match stalls generated
for the same events

= Other sync. stalls are due to changes in architectural
configuration

cfgl cfg2
T1 T2 T1 T2

Y
| 4 sync. stalls

Y 1
<; 2 sync. stalls
: X
X Y 4% Y

17

0
16)0-abelane m @
9] b=
b | 9s®(abelane m
E W 5
2 | = 1h32-asimdnm ;mnv
S i
- -
D) = - 9seq asimdnm S
asg - ¢
Y 5 Q
” 4 [16)0-126|ehH =
n aseq-|abjeh M
X)
o| K : O
o v—i Thio-pgew) Q
3
o2 aseq-pce wy m
L e
u 16)0-9)xenba hmw
1g = aseg-ayenbs)
m_) m O
&
m 3 1h)o-1sde =
w aseq-isde %J
A v n -
O ®
D 1640-njdde S
2 aseq-njdde 0
2 s :
8 mmu 16j0-dwwe m
A — oseq-dwwe 3
T 1 T 1 1 O
D s O O OXR OX <
.ﬂd " O o o o o Q
o 1610 pue auljaseq S
/) | usamlag UOWWOI 10U S||eIS % m

Comparing Samples

o After simulating two samples, how to compute
performance estimate?

IPC with no sync.

O For each thread we stalls (IPCNO-STALLS)
compute two IPCs: t y
= One with the uncommon . IPCwith
sync. stalls O uncommon
o sync. stalls

= And one without them (IPCUC-STALLS)

O Use the two IPCs to
compute a range of configl config2
possible speed-ups

19

Estimating Performance

O IPCNO-STALL with no uncommon stalls
O IPCUYC-STALL with uncommon stalls

O Use the IPCs to compute a range of possible
speed-ups for the sample

| . Z |PC;(;__STAL faster
= I t !
_ NO-STALLS |
#threads iethreads II:)Cbasei g' iinCOﬂClUSive
. slower : A
3 : ’
NO-STALL 3 1 ! =
ws h= : Z T e %
_ UC-STALLS
#threads icthreads II:)Cbasei g
>

casel case?2 case3

20

Comparison to Prior Work

O Lepak et al [PACT'03] proposed full-system
deterministic simulation

1. Logs are collected using full-system simulator

> Impractical for large applications, can be hard to port
application to simulation environment

2. No matching of stalls to compute performance
estimates
2 Results in larger speed-up ranges

21

Weighted Speed-Up Estimates

O cfgl-prior O cfg2-prior M cfgl-match O cfg2-match

=
~

=
N
3

=
|

weighed speed-up
o
o

(average across samples)
o
(o6}
|

o
~
|

o
N
|

ammp applu apsi equake fma3d galgel wupwise average

O prior — equivalent to previous work, where no matching of
sync. stalls across runs is performed

22

[imitations

o Shared-memory update order is fixed

= Not fair to evaluate design changes that require different
order of shared memory accesses

o If the number of
synchronization stalls Is too
high, results are not
conclusive (case 3)

——

w-speed-up
|_\

1

casel case

case

0 No OS activity

23

Summary & Future Work

0 Checkpointing mechanism for deterministic
simulation of multi-threaded workloads on multi-
cores

O Technique to provide performance estimates when
using deterministic simulation
= Match common stalls across runs

O Future Work
m How the technique scales with more thread than cores

m How the technique can be integrated with representative
sampling techniques such as Simpoint

m Validate baseline against hardware numbers

24

Thank You

O Email: cristiano.l.pereira@intel.com

25

Back-up

More Detailed Breakdown

Mtrue dep M false dep O before system call O after system call

0% [] — -

% of synchronization cycles breakdown

@0 \~ N \© o o <@ of
@((\ Q.QQ Q’Q 60‘\)3 \((\6' QQXQ’ o \)Q®\ ‘a’“e‘a

27

Varying RS/ROB sizes

B cfgl O cfg2
1.05 g g

0.95 -

09 -

0.85 -

weighed speed-up (average across samples)

ammp applu apsi equake fma3d

galgel

wupwise

average

28

Additional Statistics

0 Shared Memory Dependencies

m On average 1 shared-memory dependency per
70Kk Instructions

® 10% generate stalls

O Checkpoint collection:
m 30x slowdown to collect checkpoints
m Average log size: 14KB/million instructions

29

