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Motivation

O Simulating multi-threaded shared-memory
workloads is important for evaluating current and
future multi-core processors

O Problem: Runs across different configurations are
nondeterministic [Alameldeen’03, Lepak’03]

= Locks are acquired in different order
= Unprotected shared-memory accesses

O One can’t compare two runs of the same
benchmark directly
- Change in micro-arch simulated or execution path taken?
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Dealing With Non-Determinism

1. Run multiple simulations for each studied
configuration [Alameldeen’03]
m  Needs random perturbation for each run
m  Average behavior per configuration
m  Cost: multiple runs

2. Force deterministic behavior so that one run In
each configuration is performed [Lepak’03, this paper]
m  Same execution paths
m  Cost: some loss in fidelity



Contributions

O Focus on reproducible user-level simulation
of multi-threaded workloads for multi-core

1. Binary instrumentation tool to collect
logs for deterministic simulation

m Easy of use: trace in the same environment

2. Improved methodology to compare
deterministic simulation results

m Better speed-up estimates than prior method



The Approach and Outline

O Remove non-determinism by constraining the
order of shared memory updates

= Allows variability of execution-driven simulation but fixed
order of shared-memory updates

m EXxecution paths are the same across simulations on
different configurations
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Collecting User-level Checkpoints

O Use our prior pin-based logging tool to collect

user-level checkpoints [Sigmetrics’06]

m Reproducible simulation of single-threaded programs
= Automatically records registers and memory side-

effects of system calls, DMA transfers and
asynchronous interrupts
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Capturing Multi-Threaded Behavior

O Capture shared-memory update order
(RAW/WAR/WAW)
= How to detect: Emulate a directory structure
= What to log: Use standard Netzer transitive optimization

Program execution

T2 logs:
(Y, T1, X)
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Reproducible Simulation

O Modified Intel’s ASIM simulator to consume checkpoints

O Force same sequence of shared-memory updates by
artificially stalling threads

Logged execution During simulation
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These are called synchronization stalls



Handling System Calls

o During logging, while a system call is executing,
other threads make progress

O During simulation, system calls execute in zero

time
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Handling System Calls

o During logging, while a system call is executing,
other threads make progress

O During simulation, system calls execute in zero

time
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Synchronization Stalls

0 During simulation sync. stalls result from:
m Shared-memory dependencies
= System-Call

O Introduced to guarantee reproducible
behavior across simulation runs

> Would not naturally occur in the execution

0 Need to track and account for the stalls
when predicting performance
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Tracking Synchronization Stalls

O During simulation, an instruction with a
shared-memory dependency is artificially
stalled If:

1. All dependencies imposed by the model
were met

2. Shared-memory dependencies are NOT
satisfied.
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Source of Synchronization Stalls

O Goal is to compare two simulated architectural
configurations
= Behavior recorded in the machine where the checkpoints

were collected

O For one simulated configuration, sync. stalls come
from difference in behavior between the
checkpointed and simulated machines
= Error/slowdown (in terms of stalls) introduced

{\Norkload]— logger » Configl /™ I

sync. stalls
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Evaluation Methodology

O Collected 4-threaded checkpoints of SpecOMP2001
m 10 checkpoints per program with =300 million instruction each
m Collected uniformly on a 4 CPU Intel Xeon machine

O Simulated hypothetical 4-core x86 processor varying cache
configuration per core:

Configuration Description
Baseline L1 I/D 32KB, 8-way, 64 byte line size

L2 Unified 256KB, 8-way, 64 byte line size
Configl L1 I/D 16KB, 8-way, 64 byte line size

L2 Unified 128KB, 8-way, 64 byte line size
Config2 L1 I/D 64KB, 8-way, 64 byte line size

L2 Unified 512KB, 8-way, 64 byte line size
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Synchronization Stalls: Baseline
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O Synchronization stalls due to difference between logged and
simulated baseline behavior

O Average of 10.7%, from which 6.5% are system call stall
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Synchronization Stalls Across
Conﬁgurations

O After simulating different configurations, number of
stalls i1s different for each simulation

O Some sync. stalls are common across simulations

m Differences between checkpointed behavior and the
behavior in each configuration L

_ _ _ _ Workload
= Common error introduced in the simulation heckpoin

v

O Other sync. stalls are due to
differences across configurations
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Finding Common Synchronization Stalls

o Each simulation run generates a stall-trace
m Each entry is a tuple: (tid, instruction count, #stall cycles)

O Across runs, we identify and match stalls generated
for the same events

= Other sync. stalls are due to changes in architectural
configuration
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Comparing Samples

o After simulating two samples, how to compute
performance estimate?

IPC with no sync.

O For each thread we stalls (IPCNO-STALLS)
compute two IPCs: t y
= One with the uncommon . IPCwith
sync. stalls O uncommon
o sync. stalls

= And one without them (IPCUC-STALLS)

O Use the two IPCs to
compute a range of configl config2
possible speed-ups
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Estimating Performance

O IPCNO-STALL with no uncommon stalls
O IPCUYC-STALL with uncommon stalls

O Use the IPCs to compute a range of possible
speed-ups for the sample
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Comparison to Prior Work

O Lepak et al [PACT'03] proposed full-system
deterministic simulation

1. Logs are collected using full-system simulator

> Impractical for large applications, can be hard to port
application to simulation environment

2. No matching of stalls to compute performance
estimates
2 Results in larger speed-up ranges
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Weighted Speed-Up Estimates

O cfgl-prior O cfg2-prior M cfgl-match O cfg2-match

=
~

=
N
3

=
|

weighed speed-up
o
o

(average across samples)
o
(o6}
|

o
~
|

o
N
|

ammp applu apsi equake fma3d galgel wupwise average

O prior — equivalent to previous work, where no matching of
sync. stalls across runs is performed
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[imitations

o Shared-memory update order is fixed

= Not fair to evaluate design changes that require different
order of shared memory accesses

o If the number of
synchronization stalls Is too
high, results are not
conclusive (case 3)
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Summary & Future Work

0 Checkpointing mechanism for deterministic
simulation of multi-threaded workloads on multi-
cores

O Technique to provide performance estimates when
using deterministic simulation
= Match common stalls across runs

O Future Work
m How the technique scales with more thread than cores

m How the technique can be integrated with representative
sampling techniques such as Simpoint

m Validate baseline against hardware numbers
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Thank You

O Email: cristiano.l.pereira@intel.com
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Back-up




More Detailed Breakdown

Mtrue dep M false dep O before system call O after system call
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Varying RS/ROB sizes
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Additional Statistics

0 Shared Memory Dependencies

m On average 1 shared-memory dependency per
70Kk Instructions

® 10% generate stalls

O Checkpoint collection:
m 30x slowdown to collect checkpoints
m Average log size: 14KB/million instructions
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