
1

Reproducible Simulation of Multi-
Threaded Workloads for Architecture

Design Exploration

Cristiano Pereira (Intel Corporation & UCSD)
Harish Patil (Intel Corporation)

Brad Calder (Microsoft Corporation & UCSD)

IISWC’08, Seattle, WA

2

Motivation
Simulating multi-threaded shared-memory
workloads is important for evaluating current and
future multi-core processors

Problem: Runs across different configurations are
nondeterministic [Alameldeen’03, Lepak’03]

Locks are acquired in different order
Unprotected shared-memory accesses

One can’t compare two runs of the same
benchmark directly
→ Change in micro-arch simulated or execution path taken?

3

Dealing With Non-Determinism

1. Run multiple simulations for each studied
configuration [Alameldeen’03]

Needs random perturbation for each run
Average behavior per configuration
Cost: multiple runs

2. Force deterministic behavior so that one run in
each configuration is performed [Lepak’03, this paper]

Same execution paths
Cost: some loss in fidelity

4

Contributions
Focus on reproducible user-level simulation
of multi-threaded workloads for multi-core

1. Binary instrumentation tool to collect
logs for deterministic simulation

Easy of use: trace in the same environment

2. Improved methodology to compare
deterministic simulation results

Better speed-up estimates than prior method

5

The Approach and Outline
Remove non-determinism by constraining the
order of shared memory updates

Allows variability of execution-driven simulation but fixed
order of shared-memory updates
Execution paths are the same across simulations on
different configurations

1. How we collect
the checkpoints

3. How we compare
the results

Checkpoints
Config1

Config2

Simulator

Compare
resultsWorkload

logging
tool

2. Simulator changes

6

Collecting User-level Checkpoints
Use our prior pin-based logging tool to collect
user-level checkpoints [Sigmetrics’06]

Reproducible simulation of single-threaded programs
Automatically records registers and memory side-
effects of system calls, DMA transfers and
asynchronous interrupts

INPUT Application

logger

PIN

LOGS

7

Capturing Multi-Threaded Behavior
Capture shared-memory update order

(RAW/WAR/WAW)
How to detect: Emulate a directory structure
What to log: Use standard Netzer transitive optimization

X: X: WaWa

Y: RaY: Ra
T2 logs:T2 logs:
(Y, T1, X)(Y, T1, X)

T1T1 T2T2

Shared memoryShared memory
order log entryorder log entry

Pr
o
g
ra

m
 e

xe
cu

ti
o
n

8

Reproducible Simulation
Modified Intel’s ASIM simulator to consume checkpoints
Force same sequence of shared-memory updates by
artificially stalling threads

These are called synchronization stalls

X: X: WaWa

Y: RaY: Ra

T1T1 T2T2cyclescycles
00
11
22
33
44
55

X: X: WaWa
Y: RaY: Ra

Logged executionLogged execution

T2 log: (Y, T1, X)T2 log: (Y, T1, X)

““artificiallyartificially
stalledstalled”” T2 T2
for 2 cyclesfor 2 cycles

T1T1 T2T2
cyclescycles

00
11
22
33
44
55

During simulationDuring simulation

9

Handling System Calls
During logging, while a system call is executing,
other threads make progress
During simulation, system calls execute in zero
time

T1 T2

Time spent
on system
call

b1

b2

Logged execution

a1

a2

T1 T2

b1

b2

During simulation

a1
a2

10

Handling System Calls
During logging, while a system call is executing,
other threads make progress
During simulation, system calls execute in zero
time

T1 T2

Time spent
on system
call

b1

b2

Logged execution

T1 T2

b1

b2

During simulation

stall
before
syscall

stall
after
syscall

a1

a2

a1

a2

11

Synchronization Stalls

During simulation sync. stalls result from:
Shared-memory dependencies
System-Call

Introduced to guarantee reproducible
behavior across simulation runs

Would not naturally occur in the execution

Need to track and account for the stalls
when predicting performance

12

Tracking Synchronization Stalls
During simulation, an instruction with a
shared-memory dependency is artificially
stalled if:

1. All dependencies imposed by the model
were met

2. Shared-memory dependencies are NOT
satisfied.

13

Source of Synchronization Stalls
Goal is to compare two simulated architectural
configurations

Behavior recorded in the machine where the checkpoints
were collected

For one simulated configuration, sync. stalls come
from difference in behavior between the
checkpointed and simulated machines

Error/slowdown (in terms of stalls) introduced

Config1

sy
n

c.
 s

ta
ll

s

loggerWorkload

14

Evaluation Methodology
Collected 4-threaded checkpoints of SpecOMP2001

10 checkpoints per program with ±300 million instruction each
Collected uniformly on a 4 CPU Intel Xeon machine

Simulated hypothetical 4-core x86 processor varying cache
configuration per core:

L1 I/D 64KB, 8-way, 64 byte line size
L2 Unified 512KB, 8-way, 64 byte line size

Config2

L1 I/D 16KB, 8-way, 64 byte line size
L2 Unified 128KB, 8-way, 64 byte line size

Config1

L1 I/D 32KB, 8-way, 64 byte line size
L2 Unified 256KB, 8-way, 64 byte line size

Baseline

DescriptionConfiguration

15

Synchronization Stalls: Baseline

Synchronization stalls due to difference between logged and
simulated baseline behavior
Average of 10.7%, from which 6.5% are system call stall

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

 ammp
 applu

 apsi

 equake
 fm

a3d
 galgel

 wupwise
average

%
 o

f s
yn

ch
ro

ni
za

tio
n

cy
cl

es
 b

re
ak

do
w

n shared memory system call

16

Synchronization Stalls Across
Configurations

After simulating different configurations, number of
stalls is different for each simulation
Some sync. stalls are common across simulations

Differences between checkpointed behavior and the
behavior in each configuration
Common error introduced in the simulation

Config1 Config2

Workload
checkpoint

sy
n

c.
 s

ta
ll
s

sy
n

c.
 s

ta
ll
s

Other sync. stalls are due to
differences across configurations

Error not common across the runs

common

17

Finding Common Synchronization Stalls
Each simulation run generates a stall-trace

Each entry is a tuple: (tid, instruction count, #stall cycles)

Across runs, we identify and match stalls generated
for the same events

Other sync. stalls are due to changes in architectural
configuration

Y

2 sync. stalls

4 sync. stalls

cfg1
T1 T2

X

cfg2
T1 T2

Y

Y

YX

18

Stalls Across Configurations Results

ammp shows more change in behavior across the configurations

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%
 a

m
m

p-
ba

se
 a

m
m

p-
cf

g1

 a
pp

lu
-b

as
e

 a
pp

lu
-c

fg
1

 a
ps

i-b
as

e
 a

ps
i-c

fg
1

 e
qu

ak
e-

ba
se

 e
qu

ak
e-

cf
g1

 fm
a3

d-
ba

se
 fm

a3
d-

cf
g1

 g
al

ge
l-b

as
e

 g
al

ge
l-c

fg
1

 w
up

w
is

e-
ba

se
 w

up
w

is
e-

cf
g1

av
er

ag
e-

ba
se

av
er

ag
e-

cf
g1

%
 s

ta
lls

 n
ot

 c
om

m
on

 b
et

w
ee

n
ba

se
lin

e
an

d
cf

g1

shared memory system call1.36%
2%

19

Comparing Samples

IP
C

IPC with no sync.
stalls (IPCNO-STALLS)

IPC with
uncommon
sync. stalls
(IPCUC-STALLS)

config1 config2

After simulating two samples, how to compute
performance estimate?

For each thread we
compute two IPCs:

One with the uncommon
sync. stalls
And one without them

Use the two IPCs to
compute a range of
possible speed-ups

20

Estimating Performance
IPCNO-STALL with no uncommon stalls
IPCUC-STALL with uncommon stalls

Use the IPCs to compute a range of possible
speed-ups for the sample

∑
∈

−

−

=
threadsi

STALLSUC
base

STALLSNO

i

i

IPC
IPC

threads
hws exp

#
1_

∑
∈

−

−

=
threadsi

STALLSNO
base

STALLSUC

i

i

IPC
IPC

threads
lws exp

#
1_

w
-s

pe
ed

-u
p

1

case1 case3case2

fasterfaster

inconclusiveinconclusive
slowerslower

21

Comparison to Prior Work
Lepak et al [PACT’03] proposed full-system
deterministic simulation

1. Logs are collected using full-system simulator
Impractical for large applications, can be hard to port
application to simulation environment

2. No matching of stalls to compute performance
estimates

Results in larger speed-up ranges

22

Weighted Speed-Up Estimates

prior – equivalent to previous work, where no matching of
sync. stalls across runs is performed

0.2

0.4

0.6

0.8

1

1.2

1.4

ammp applu apsi equake fma3d galgel wupwise average

w
ei

gh
ed

 s
pe

ed
-u

p
(a

ve
ra

ge
 a

cr
os

s
sa

m
pl

es
)

cfg1-prior cfg2-prior cfg1-match cfg2-match

23

Limitations
Shared-memory update order is fixed

Not fair to evaluate design changes that require different
order of shared memory accesses

If the number of
synchronization stalls is too
high, results are not
conclusive (case 3)

No OS activity
w

-s
pe

ed
-u

p

1

case1 case3case2

24

Summary & Future Work
Checkpointing mechanism for deterministic
simulation of multi-threaded workloads on multi-
cores

Technique to provide performance estimates when
using deterministic simulation

Match common stalls across runs

Future Work
How the technique scales with more thread than cores
How the technique can be integrated with representative
sampling techniques such as Simpoint
Validate baseline against hardware numbers

25

Thank You
Email: cristiano.l.pereira@intel.com

26

Back-up

27

More Detailed Breakdown

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

 ammp
 applu apsi

 equake
 fm

a3d
 galgel

 wupwise
average%

 o
f s

yn
ch

ro
ni

za
tio

n
cy

cl
es

 b
re

ak
do

w
n true dep false dep before system call after system call

28

Varying RS/ROB sizes

0.8

0.85

0.9

0.95

1

1.05

ammp applu apsi equake fma3d galgel wupwise average

w
ei

gh
ed

 s
pe

ed
-u

p
 (a

ve
ra

ge
 a

cr
os

s
sa

m
pl

es
)

cfg1 cfg2

29

Additional Statistics
Shared Memory Dependencies

On average 1 shared-memory dependency per
70k instructions
10% generate stalls

Checkpoint collection:
30x slowdown to collect checkpoints
Average log size: 14KB/million instructions

