Tim Sweeney
Epic Games
tim@epicgames.com

WILD SPECULATION ON
CONSUMER WORKLOADS:
2012-2020

Background:

Epic Games

Background: Epic Games

ndependent game developer
_ocated in Raleigh, North Carolina, USA
Founded in 1991

Over 30 games released
Gears of War

Unreal series
Leading supplier of Game Engines

History:

Unreal Engine

Unreal Engine 1
1996-1999

* First modern game engine
Object-oriented
Real-time, visual toolset
Scripting language

= |ast major software renderer
Software texture mapping
Colored lighting, shadowing
Volumetric lighting & fog
Pixel-accurate culling

= 25 games shipped

Unreal Engine 2
2000-2005

PlayStation 2, Xbox, PC
DirectX 7 graphics
Single-threaded

4,0 games shipped

Unreal Engine 3
2006-2012

PlayStation 3, Xbox 360, PC
DirectX g graphics

Pixel shaders
Advanced lighting & shadowing

Multithreading (6 threads)

Advanced physics

More visual tools
Game Scripting
Materials
Animation
Cinematics...

150 games in

development

Unreal Engine

d —

Mass Effect (BioWare)

Undertow (Chair Entertainment) BioShock (2K Games)

Game Development: 2008

Gears of War 2: Project Overview

* Project Resources
15 programmers
45 artists
2-year schedule
$12M development budget

= Software Dependencies
1 middleware game engine
~20 middleware libraries
Platform libraries

Gears of War 2: Software Dependencies

Gears of War 2
Gameplay Code
~250,000 lines C++, script code

Unreal Engine 3
Middleware Game Engine
~2,000,000 lines C++ code

) ZLib
DirectX Speed FaceFX Data
Tree Face

G raph ICS Rendering | 8| Animation Compr-
ession

Hardware:

History

Computing History

1985
1989
1993
1995

1999
pYolop!

2006

ntel 80386: Scalar, in-order CPU
ntel 80486: Caches!

Pentium: Superscalar execution
Pentium Pro: Out-of-order execution

Pentium 3: Vector floating-point
AMD Opteron: Multi-core

PlayStation 3, Xbox 360: "Many-core”
...and we're back to in-order execution

Graphics History

1984 | 3D workstation (SGlI)
1997 | GPU (3dfx)
2002 | DirectXgq, Pixel shaders (ATI)

2006 | GPU with full programming language
(NVIDIA GeForce 8)

20097 | x86 CPU/GPU Hybrid
(Intel Larrabee)

Hardware:

2012-2020

Hardware: 2012-2020
[]
Processor g Processor [Processor |l Processor @l Processor
In Order In Order In Order In Order In Order
4 Threads 4 Threads 4 Threads 4 Threads 4 Threads
Setup/ Rstr / ZCull
I$ D$ I1$ DS$ I1$ D$ I1$ D$ 1$ D$
Geom Thread Issue Pixel Thread lssue

= 3
L2 Cache

OO
DOio0) n
DOJOOC

i
E H
¢

Vix Thread |

Te
-

|

|
!
|

)

fu

/i
o]|
[S[=[=]=)
Oo0oE
CICICIGE

=

e

H
i
-k

;

[L1]
F

1

|
!
Processor | Processor ll Processor |l Processor [l Processor [] [lﬁ |]
In Order In Order In Order In Order In Order
4 Threads 4 Threads 4 Threads 4 Threads 4 Threads ﬁ
1$ D$ I1$ D$ 1$ D$ I1$ D$ I1$ D$

Intel Larrabee NVIDIA GeForce 8

x86 CPU-GPU Hybrid General Purpose GPU

C/C++ Compiler CUDA "“C"” Compiler
DirectX/OpenGL DirectX/OpenGL

Many-core, vector architecture Many-core, vector architecture
Teraflop-class performance Teraflop-class performance

Hardware: 2012-2020

CONCLUSION

CPU, GPU architectures are converging

The Graphics Hardware of
Future

All else is just computing!

Potential Hardware 2012-2020:

A unified architecture for computing and
graphics

Hardware Model
* Three performance dimensions
Clock rate

Cores
Vector width

= Executes two kinds of code:
Scalar code (like x86, PowerPQC)
Vector code (like GPU shaders or SSE/Altivec)

= Some fixed-function hardware

Texture sampling
Rasterization?

Market Analysis:

Teratlop Consumer Applications

Teraftlop Consumer Applications

Teraftlop Consumer Applications

1. Games

Teraftlop Consumer Applications

1. Games
THE END

Game Development:

2012-2020

Game Development: 2012-2020

"= Programming

How do we write code for 100 cores?

= Graphics
What's possible beyond DirectX / OpenGL?

= Implications for Performance Analysis

PROGRAMMING: 2012-2020

Programming: 2012-2020
The Essentials

Developer Productivity

A programmer’s time is valuable
Productivity is very important!
We must make multi-core programming easy!

Performance
Supporting “many cores” with multithreading
Scaling to “vectors instruction sets”
Understanding Performance Implications

Multithreading: 2012-2020

Multithreading in Unreal
3:
- TazkoBARaklel1sm”

Al, scripting
Thousands of interacting objects

» Rendering thread

Scene traversal, occlusion
Direct3D command submission

» Pool of helper threads for other work
Physics Solver
Animation Updates

Good for 4 cores.
No good for 40 cores!

“Shared State Concurrency”
The standard C++/Java threading model

Many threads are running
There is 512MB of data
Any thread can modify any data at any time

All synchronization is explicit, manual
See: LOCK, MUTEX, SEMAPHORE

No compile-time verification of correctness properties:
Deadlock-free
Race-free

Invariants

Multithreaded Gameplay Simulation

Multithreaded Gameplay Simulation

= 1000+ of game objects

= Each object is:
Modifyable

Updated once per frame
Each update touches 5-10 other objects

Updates are object-oriented,
so control-flow isn’t statically known

= Code written by 10’s of programmers

They aren’t computer scientists!

How to Multithread?

Multithreaded Gameplay Simulation

Problems:
»= Games must scale to "many cores” (20-100)
» Must avoid all single-threaded bottlenecks

Solutions:

» “Shared State Concurrency”

= "Message Passing Concurrency”

= “Software Transactional Memory”
"Pure Functional Programming”

Multithreaded Gameplay
Simulation:

Manual Synchronization
ldea:

= Update objects in multiple threads
= Each object contains a lock
= “Just lock an object before using it”

Problems:
= “Deadlocks”

= "Data Races”

= Debugging is difficult/expensive

Multithreaded Gameplay
Simulation:

“Message Passing”
|dea:

= Update objects in multiple threads

= Each object can only modify itself

= Communicate with other objects by sending
messages

Problems:
= Requires writing 1000's of message protocols
= Still need synchronization

Multithreaded Gameplay
Simulation:

opftware Transactional Memory

= Update objects in multiple threads

= Eachthread runsinside a transaction block
and has an atomic view of its “local” changes to memory

= C++runtime detects conflicts between transactions
Non-conflicting transactions are applied to “global” memory
Conflicting transactions are “rolled back” and re-run

Implemented 100% in software; no custom hardware required.

Problems:

= "“Object update” code must be free of side-effects
= Requires C++ runtime support

= Cost around 30% performance

See: "Composable Memory Transactions”; Tim Harris, Simon Marlow, Simon Peyton Jones,
and Maurice Herlihy. ACM Conference on Principles and Practice of Parallel Programming 2005

Multithreaded Gameplay
Simulation:

Conc}usiﬁ .
syncnronization:

Manua
Very difficult, error-prone
Message passing
Difficult, error-prone
Transactional Memory

Easy! Almost as easy as single-threading.

Analysis indicates reasonable cost,
low conflict rate (1-5%)

Claim: Transactional memory is the only productive,
scalable solution for multithreaded gameplay simulation.

Transactional Memory:
Implementation

Implementation options:

* |Indirect all memory reads/writes to change-list
(e.g. using a hash table)

= Generate minimal change-list for undo
= Store transaction detail per memory-cell

Threading Model
= Main thread invokes transactions

= Launch 1 thread per running transaction
Ideally want to run 1 transaction per hardware thread

Transactional Memory:
Expectations

Game runs at 30-60 frames per second
1000 - 100,000 transactions per frame

L ow conflict rate
Guess: 5%

Transactions significantly impact performance
Guess: 30% to 100% overhead

Extra instructions for all mutable memory reads/writes
Working set increases, cache efficiency decreases

But it's worth it!

Willing to trade performance for productivity!

Transactional Memory:
Performance Measurement

= Each transactionis single-threaded
Thus performance is easy to understand

= Transaction conflicts are the essential
consideration

Can sequentialize all code + add 2X overhead

Want to be able to...
Measure conflict rate

Attribute conflicts to particular transactions & memory
reads/writes

Ideally, analyze all potential conflicts in a set of

transactions to be run
Not just those that actually occurred nondeterministically

Pure Functional Programming

Pure Functional Programming

"Pure Functional” programming style:

» Define algorithms that don’t write to shared
memory or perform I/O operations

(their only effect is to return a result)

Examples:
e (Collision Detection

* Physics Solver
 Pixel Shading

Pure Functional Programming
Example:
.Collisiqn Detect

. ipn
A collision detection algorithm takes a f'l)ne segment and
determines when and where a point moving along that
line will collide with a (constant) geometric dataset.

struct vec3

{
}-

struct hit

{

float x,y,z;

bool DidCollide;

float Time;

vec3 Location;
}-

hit collide(vec3 start,vec3 end);

(it doesnt modify any shared memory)

Pure Functional Programming

“Inside a function with no side effects,
sub-computations can be run in any order,
or concurrently,

without affecting the function’s result”

With this property:

* A programmer can explicitly multithread the
code, safely.

e Future compilers will be able to automatically
multithread the code, safely.

See: “"Implementing Lazy Functional Languages on Stock Hardware”;
Simon Peyton Jones; Journal of Functional Programming 2005

Pure Functional Programming:
"hreading Model

Threading Model

= Start a pool of helper threads
1 per hardware thread

» Top-level program executed in one thread

= All execution may be multithreaded
"Small” subexpressions evaluated normally
"Large” subexpressions evaluated via thunk
Thunk data structure represents a suspended computation
Can evaluate thunks in
Same thread
Separate thread

Pure Functional Programming:
Cache Locality Considerations

* Mustn't hand off sub-expression computations
to random threads

= Use algorithm like “work stealing”

Each thread contains a work queue

If no helper threads available, add thunk to creating
thread’s queue

When one thread stalls, help another thread finish
its work by pulling from the tail of its queue

Arrange work-stealing order in hierarchy to
improve locality

Pure Functional Programming:
Workload Expectations (Part 1)

= 80-90% of future game execution time may be
spent in pure functional code

Rendering, Physics, Collision, Animation, ...

* Threads will handle tiny chunks of work

100 - 10,000’s of instructions
Thus thread coordination overhead must be small!

Expect 5ooM - 1G thread invocations per second

» Thunk dependencies are the key consideration!

Can accidentally sequentialize execution!

Pure Functional Programming:
Workload Expectations (Part 2)

= Games will be able to scale to...

= 10’s of threads with C++

= 100's of threads with future programming languages
Where we write functional & transactional code,
and compiler/runtime do the threading for us.

* Thread coordination will significantly impact

performance
Guess: 30% to 100% overhead

= Butit's worth it!

Willing to trade performance for productivity!

Implicit Multithreading:
Performance Measurement

* Threading performance is non-deterministic
Even when programming model is deterministic

Lots of threads executing dynamically-scheduled
work

Cache locality depends on dynamic threading
decisions

= Performance attribution is tricky

Must associate performance counters with code

currently running on thread
...which may change every 100 instructions!

Vectorization

Supporting Vector Instruction Sets efficiently

]

TH|TH [T EE ;’.’:‘ EOIEIE
OOI0OmoOCoN o0 O0lo0
Coj0Cpooiooon [0 [
DD DD .l LI ;.I . l

i
=

]
-

H
[(]
| | -
;iI
H

|
I
|

I

|

y ___..‘

b
Ie
i

NVIDIA GeForce 8:
8 to 15 cores
16-wide vectors

Vectorization

C++, Java compilers generate “scalar” code

GPU Shader compilers generate “vector” code
= Arbitrary vector size (4, 16, 64, ...)

= N-wide vectors yield N-wide speedup

Vectorization: “The 0ld Way”

= *Old Vectors” (SIMD):
Intel SSE, Motorola Altivec

4-wide vectors
4-wide arithmetic operations

Vector loads
Load vector register from vector stored in memory

Vector swizzle & mask

Future Programming Models:
Vectorization

= "Old Vectors”
Intel SSE, Motorola Altivec

vecd X,Y,Z,;

Z = X+y;

Vectorization: “New Vectors”

(ATI, NVIDIA GeForce 8, Intel Larrabee)

16-wide vectors
16-wide arithmetic

Vector loads/stores

Load 16-wide vector register from scalars
from 16 independent memory addresses,
where the addresses are stored in a vector!

Analogy: Register-indexed constant access in DirectX

Conditional vector masks

‘“New SIMD” 1s better than “0ld SIMD”

"Old Vectors” were only useful when dealing
with vector-like data types:

"XYZW" vectors from graphics

4X4 matrices

“"New Vectors” are far more powerful:

Any loop whose body has a statically-known call graph
free of sequential dependencies can be “vectorized”,
or compiled into an equivalent 16-wide vector
program. And it runs up to 16X faster!

‘“New Vectors” are universal

int n;
cmplx coords|[];
int color[] = new int[n]

for(int 1=0; i<n; 1++) {
int j=0;
cmplx c=cmplx(0,0)
while(mag(c) < 2) {
c=c*c + coords[i];
J++;
ks

color[i] = j;

This code...
= s free of sequential dependencies
= has a statically known call graph

Therefore, we can mechanically transform it into an equivalent
data parallel code fragment.

‘“New Vectors” Translation

for(int i=0; i<n; i++) { for(int i=0; i<n; i+=N) {
. i_vector={i,i+1,._i+N-1}
3} I_mask={i<n, 1+1<N, i+2<N, . . i+N-1<N}

Note: Any code outside this loop
(which invokes the loop)
is necessarily scalar!

Vectors” Translation

int n;

o Note: Any code outside this loop
forcint 105 i< 149 { (which invokes the loop)

int j=0; Q .
EMpIX cocmplx(0,0) is necessarily scalar!
while(mag(c) < 2) {

c=c*c +

coords[i]; Snt
int n;

cmplx coords[];
int color[] = new int[n]

J++;

color[i] = j;
for(int 1=0; i<n; i+=N) {
int[N] i_vector={i,i+1,..i+N-1}
Loop Index Vector bool [N] i_mask={i<n, i+1<N, i+2<N, . .i+N-1<N}

Loop Mask Vector compIx[N] c_vector={cmplx(0,0),..}
while(1) {
. . bool [N] while_vector={
Vectorized Loop Variable i_mask[0] && mag(c_vector[0])<2,

Vectorized Conditional: 3 i
Propagates loop mask if(all_false(while_vector))

o break;
to local condition c_vector=c_vector*c_vector + coords[i..i+N-1 : i_mask]

}

colors[i..i+N-1 : i_mask] = c_vector;

Mask-predicated

Mask-predicated
vector read

vector write

Vectorization Tricks

= Vectorization of loops

Subexpressions independent of loop variable are scalar and can be
lifted out of loop

Subexpressions dependent on loop variable are vectorized

Each loop iteraction computes an “active mask” enabling operation
on some subset of the N components

= Vectorization of function calls

For every scalar function, generate an N-wide vector version of the
function taking an N-wide “active mask”
= Vectorization of conditionals

Evaluate N-wide conditional and combine it with the current active
mask

Execute “true” branch if any masked conditions true
Execute “false” branch if any masked conditions false
Will often execute both branches

Layers: Multithreading & Vectors

Physics, collision detection,
scene traversal, path finding

Game World State
Graphics shader

Vector (Data Parallel) Subset

Purely functional core

Software Transactional Memory

Sequential Execution

Hardware 1/0

Potential Performance Gains™: 2012-2020

Up to...
64X for multithreading
1024X for multithreading + vectors!

* My estimate of feasibility based on Moore’s Law

Potential Thread Execution Profile
for 2012-2020 games’

Vector 60%

Functional 30%0

Transactional 920

Sequential 196

* Wild guesses based on analysis and extrapolation of Unreal Engine 3 systems and performance characteristics

Vectorizable Workload
Considerations

= Subtle compiler feature now impacts
performance up to 16X

= What do we really care to measure?
FLOPS or IPS?

= Cache complications
What happens given 16X more FLOPS unsupported by 16X
more bandwidth or cache?

GRAPHICS: 2012-2020

GPU Programming 1in
The Model

DirectX 10 Pipeline
B fixed

B rprogrammable

Large frame buffer
Complicated pipeline

¥ ¥ 3

. L . :
It's fixed-function el B B R ERETR
Ey;

But we can specify
shader programs
that execute in certain pipeline stages

GPU Programming Today:
Shader Program Limitations

= No random-access memory writes
Can write to current pixel in frame buffer

Can't create data structures

Can't traverse data structures
Can hack it using texture accesses

Hard to share data between main program
and shaders programs
Weird programming language

HLSL rather than C/C++

GPU Programming Today:
Problems

= All games look similar
Due to fixed-function pipline stages

* “The shader ALU plateau”

Given 10X more pixel shader performance,
games may only look 2X better

* Poor anti-aliasing model (MSAA)

Future Graphics:
Return to 100% “Software” Rendering

» Bypass the OpenGL/DirectX API
* Implement a 100% software renderer

Bypass all fixed-function pipeline hardware
Generate image directly

Build & traverse complex data structures
Unlimited possibilities

Could implement this...
= OnIntel CPU using C/C++
= On NVIDIA GPU using CUDA (no DirectX)

Software Rendering in Unreal 1 (1998)

G

Ran 100% on CPU
No GPU required!

Features
Real-time colored lighting
Volumetric Fog
Tiled Rendering
Occlusion Detection

Software Rendering in 1998 vs 2012

60 MHz Pentium could execute:

16 operations per pixel
at 320x200, 30 Hz

In 2012, a 4 Teraflop processor
would execute:

16000 operations per pixel
at 1920x1080, 60 Hz

Assumption: Using 50% of computing power for graphics, 50% for gameplay

Future Graphics:
Raytracing

* For each pixel
Cast a ray off into scene
Determine which objects were hit
Continue for reflections, refraction, etc

= Consider
Less efficient than pure rendering
Can use for reflections in traditional render

Future Graphics:
The REYES Rendering Model

= "Dice” all objects in scene down into sub-pixel-
sized triangles

= Rendering with
Flat Shading (!)
Analytic antialiasing

= Benefits
Displacement maps for free
Analytic Antialiasing
Advanced filtering (Gaussian)
Eliminates texture sampling

Future Graphics:
The REYES Rendering Model

b

Today’s Pipeline Potential 2012 Pipeline
Build 4M poly “high-res” character Build 4M poly “high-res” character

Generate normal maps from Render it in-game!

geometry in high-res Advanced LOD scheme assures
Rendering 20K poly “low-res” proper sub-pixel sized triangles
character in-game

Future Graphics:
Volumetric Rendering

* Direct Voxel Rendering
Raycasting
Efficient for trees, foliage
Tesselated Volume Rendering
Marching Cubes
Marching Tetrahedrons
Point Clouds

Signal-Space Volume Rendering
Fourier Projection Slice Theorem
Great for clouds, translucent volumetric data

Future Graphics:
Software Tiled Rendering

= Split the frame buffer up into bins

Example: 1 bin = 8x8 pixels
" Process one bin ata time
Transform, rasterize all objects in the bin

= Consider
Cache efficiency
Deep frame buffers, antialiasing

Hybrid Graphics Algorithms

Analytic Antialiasing
Analytic solution, better than 1024x MSAA

Sort-independent translucency

Sorted linked-list per pixel of fragments requiring per-pixel memory
allocation, pointer-following, conditional branching (A-Buffer).

Advanced shadowing techniques
Physically accurate per-pixel penumbra volumes
Extension of well-known stencil buffering algorithm

Requires storing, traversing, and updating a very simple BSP free per-
pixel with memory allocation and pointed following.

Scenes with very large numbers of objects
Fixed-function GPU + APT has 10X-100X state change disadvantage

Graphics: 2012-2020
Potential Industry Goals

Achieve movie-quality:
Antialiasing
Direct Lighting
Shadowing
Particle Effects
Reflections

Significantly improve:
Character animation
Object counts
Indirect lighting

Graphics: 2012-2020
Workload Implications

* Must abandon legacy benchmarks (Directx/openGL)

But what to measure next?

» Software graphics will improve load-balancing

Can freely move FLOPS between graphics and

other game tasks
Expect to see games explore the design space quite broadly!

* Graphics remains almost “perfectly parallel”
Likely to remain primary consumer of FLOPS

FINAL THOUGHTS

Current hardware & programming
models are too tricky!

If it costs X (time, money, pain) to develop an efficient single-
threaded algorithm, then...

Multithreaded version costs 2X
PlayStation 3 Cell version costs 5X
Current "GPGPU" version is costs: 20X or more

Over 2X is uneconomical for most software companies!

This is an argument...
= Against architectures with difficult programming models

= Fortools, techniques, and languages that improve
productivity

Language Considerations

C++ remains essential
100% of today’s games are C++
Major language transitions take 10 years

New mainstream language eventually
C++/Java/C# threading model is too low-level
Major opportunities in...

Parallel workload performance
Productivity
Safety/security

Future Mainstream Programming
Language Expectatuions

Garbage collection
Productivity gain outweighs cost
First-class effects declarations
Vectorizable subset
Pure functional subset
Transactional subset
Sequential full language
More powerful type system
Safe arrays, memory access, etc
More compile-time verification (a la hardware)

Low-level sinlgle-iithead performance
30% to 2X worse than C

Performance analysis more difficult

CONCLUSION

Teraftlop Consumer Computing:
Conclusions

= Crazy new hardware is coming...
Lots of cores
Vector instruction sets

= Software will change considerably
Transactional & Functional programming
Scaling to 100's of threads & wide vectors
Return to software graphics

= Developers will be willing to sacrifice performance
in order to gain productivity more than before

High-level programming beats low-level programming
Better multithreading abstractions

