We have it easy, but do we have it right?

Amer Diwan

University of Colorado at Boulder
Research model in experimental sciences:

(i) Find bottlenecks

Identify slow segments (e.g., < 15 mph)

Repeat this survey for a number of drivers
Research model in experimental sciences:

(ii) Act on the data

Build a bridge

But what if the data is wrong?

A bridge that no one needs!
How could the data be wrong? Reality
How could the data be wrong?

Observed

- Observer Effect
 - Measurement delay caused the commuter to wait at the crossing gates
- This study was easy to conduct but it is not right!
A small perturbation drastically changes the data
A small perturbation drastically changes the data.
Why do objects shift around?

main() {
 while (true) {
 recordAtStart();
 ...
 }
}

void f () {
 ...
}
Why do objects shift around?

```c
main() {
    recordAtStart();
    while (...) {
        ...
    }
    recordAtEnd();
}

void f () {
    ...
}
```
Observer effect due to shifts when collecting hardware metrics

The “insignificant” shift when using hardware counters causes observer effect!
Observer effect due to shifts when collecting software metrics

Small instruction overhead does not translate to small observer effect
Where did the observer effect come from?

• Instrumentation pushed code and data through some boundary

• These boundaries are everywhere...
 – Cache block sizes
 – Cache sizes
 – Page sizes
 – TLB sizes
 – ...

• Unfortunately, the problem gets worse...
Research model in experimental sciences:

(iii) Evaluate the new idea

Ask your co-workers

I can get to my office in half the time

And draw broad conclusions:

Bridge cuts commute in half!
If you believe that study...
I have another bridge to sell you!

The study is easy to do but it is not right:
It is potentially biased

Your co-workers may not be representative of the whole population
For experimental computer science

Your experimental setup may not be representative of the whole population

This phenomenon is called measurement bias
Trying different setups:
environment variables (Core2/gcc)

Environment size from 0-4096 bytes

cycles (O2) / cycles (O3)

The setting of irrelevant environment variables can lead to contradictory conclusions
Order of .o files can lead to contradictory conclusions
Default or alphabetical order may not be best
Where did the measurement bias come from?

- Environment variables and link order affect code and data layout
- Many other sources of measurement bias
 - Domain independent
 - E.g., temperature of the room
 - Domain dependent
 - E.g., heap size for a garbage collected system
 - We cannot easily suppress bias!
Is measurement bias predictable?

We saw no obvious trends

perlbench on Core2/gcc (other programs are similar)
Are these phenomena consistent across microprocessors?

Different microprocessors have different “best” link orders
Are these phenomena caused by a poor compiler?

Intel’s C compiler exhibits the same phenomena.
Are these phenomenon caused by a poor methodology?

- SPEC CPU 2006 C benchmarks with train inputs
- Used best practices
 - Minimally invasive instrumentation
 - Lightly loaded machines, local disks, …
 - 15 runs for each experiment
 - Reproduced experiments on 4 architectures and two compilers
It is incredibly difficult to explain these phenomena

Need to reason with information about system and data from system

Unavailable information
Unavailable data

We can guess but it will be very hard to pin point the exact underlying causes
How do we deal with these issues

- We surveyed all papers from ASPLOS 2008, PACT, PLDI, and CGO 2007
- 88 papers had an evaluation section
- What do they do with observer effect and measurement bias?
36 papers used simulations

- Simulators avoid observer effect but can it avoid measurement bias?

Simulators also suffer from measurement bias
83 papers used more than one benchmark

- Can a diverse benchmark suite statistically factor out bias?

Maybe, but the 12 SPEC 2006 C benchmarks are not enough
How other sciences deal with these issues?

• Use many measurement setups
 – Statistically factor out bias

• Causality analysis
 – Confirm that the conclusions from the data are actually correct

• I’ll show how we can use these techniques
Using many measurement setups: Setup randomization

Program code

Experimental Setup Generator

Link order/Env var 1
Link order/Env var 2

... (ellipsis)

Link order/Env var n

Data

Statistical techniques

Popular in the social sciences
but its effectiveness depends on the representativeness of setups
Causality Analysis

1. Analyze data to arrive at hypothesis
2. Perform interventions to test hypothesis
e.g., Fix stack address
3. Validate hypothesis
e.g., changing environment variables does not change performance

Popular in sciences but difficult
A call to action

- We must reward careful experimentation
 - We need a cultural change!

- We need better workloads
 - Representative of your problem domain
A call to action (continued)

• We need more information on processors
 – Follow Sun’s footsteps!

• We need better hardware support
 – Need metrics for all key components
 – Need mapping from HW to software events
Key lessons

• Small instrumentation ≠ Small observer effect
• Observer effect and bias are
 – Unpredictable,
 – Commonplace, and
 – Large enough to obfuscate data
• Other experimental sciences expend great effort to work around these phenomena
 – We have had it easy but we don’t have it right…
Acknowledgements

• My collaborators
 – Liz Bradley, Matthias Hauswirth, Dan Knights, Mike Mozer, Todd Mytkowicz, Peter Sweeney

• Feedback on this talk
 – Mike Hind and many other colleagues at IBM
 – My research group and other friends at CU

• IIWSC for inviting me