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Abstract:  
Recent trends in deep neural network (DNN) models designed with billions of parameters exhibits 
human level capabilities, but at the cost of significant computational and memory resources (e.g., 
memory, CPU, energy, bandwidth (BW) ). This makes model deployment challenging and 
expensive in the production environment of datacenter as well as in wide variety of other 
applications such as virtual reality, augmented reality, smart wearable devices etc. Intel® Deep 
Learning Boost (Intel® DL Boost) roadmap has been making continuous improvement in the 
compute capabilities, but memory BW has not grown at the same rate as compute. Memory is 
becoming an expensive platform component and limiting compute, thereby we’re at a tipping 
point to optimize memory to unleash max compute capabilities with TCO Savings (i.e. perf/W/$). 
Key cloud customer workloads being accelerated on Xeons (Broadwell (BDW) to Cascade Lake 
(CLX) to Ice Lake (ICX) to Sapphire Rapids (SPR)), involve Convolution Neural Network (CNN) 
models and larger Fully Connected (FCs) dominated models that benefit from wider SIMD 
width/Tiled structure acceleration offered by Xeons. However, Recommender systems, Natural 
Language Processing (NLP) use cases involving Multilayer-perceptron (MLP)/Long-short term 
memory (LSTM) shifts the bottleneck from compute to memory bound wherein these use cases 
are ~90% of AI inference workload mix in datacenters. From BDW to SPR, compute scaling (INT8 
FLOPs) has increased 64x whereas memory scaling (theoretical max memory BW) is only 4x. 
 
Recently, Sparsity is gaining popularity to reduce the memory footprint of ever growing DNNs. 
Compressing the sparse models provides an opportunity to address compute/memory scaling 
challenges as well as shorten training/inference time to maximize the performance on resource 
and energy-constrained target hardware platforms. Pruning (introduction of sparsity) and 
quantization algorithms can help to compress neural networks by an order of magnitude. Recent 
DNN pruning research has shown that 90% of the weights can be removed in unconstrainted 
scenario with little loss in accuracy which resulted in unstructured sparse weight matrices. 
Though unstructured sparsity provides most flexibility, it is hard to map efficiently on modern 
CPUs and GPUs with limited support in hardware and software packages. This limitation leads to 
development of structured sparsity, but unfortunately inclined to higher accuracy loss than 
unstructured sparsity. Software approaches for unstructured sparsity can help to a certain extent 
but not completely and aren’t efficient or pragmatic for volume product intercept with TCO 



advantages. A notable aspect of sparsity is that it’s not only a tool to optimize computation 
resources, but also has been found to be efficient representation in primate brain to process 
visual information. This solution is first for Xeon Sparsity in SW for SPR and potential HW intercept 
in future.  
 
During inference runs, memory bandwidth (BW) (both DRAM and Cache) becomes bottleneck for 
inner product between large matrices (e.g., BERT_Large) weights cannot be cached due to large 
number of parameters; cores are starved while waiting for the data. This increases cache 
thrashing and misses per instructions (MPI), requiring higher memory BW resulting in lower 
performance. 
 
We have proposed solution as sparse weight compression/Decompression in Inner-Product 
kernel of oneDNN to address this challenge. In this solution, 90% of the weights can be pruned 
with little loss in accuracy which resulted in unstructured sparse weight matrices and weights are 
reordered and zero-compressed to save memory footprint. During execution, compressed 
weights are read from DRAM to LLC (lower memory BW) and decompressed using AVX512 
vpexpandb. Then, the decompressed weights in L1 cache are loaded to AMX tiles for TMUL 
Operations (Lower L3-L2/L1 BW). 
To benchmark our proposed solution, we have considered BERT-Large real-time performance 
with batch size=1 with multi-instance approach with NUMA and Memory binding on 4th Gen 
Intel® Xeon ® Scalable Processor (Sapphire Rapids). We conducted performance analysis by 
varying sparsity level and sequence length and have achieved the performance gain using the 
proposed solution for 70%, 80% and 90% int8 sparse model with varying sequence length and 
have observed significant performance gain with increase of sparsity due to higher compression 
capability leading to improved TMUL utilization & memory BW savings. Performance gain 
increases with smaller sequence length as compute density lowers with more memory access, 
i.e., memory boundness where compression helps to efficiently utilize limited memory BW. This 
has also helped in BW savings with varying sequence length for the same 90% sparse model. It 
can be demonstrated that using proposed solution read memory BW can be saved up to ~1.8x 
whereas total memory BW (read + write) can be saved up to ~1.7x which results up to 1.7x 
inference throughput speedup. It is also found that proposed solution helps to reduce memory 
boundness by retiring more instructions, thereby reducing cache miss rates alongside DRAM 
memory BW improvement. Larger networks appear to provide more opportunity for pruning so 
the compression trend is likely to continue as architectures get larger. Our detailed analysis above 
enables a targeted hardware-software co-design for next-generation deep learning architectures 
that exploit the potentially huge speedups. For instance, AVX512 is used to decompress one 
cache line at a time for decompression in this solution. 
 


