A Detailed Comparison of Two Transaction Processing Workloads

Robert Stets,
Kourosh Gharachorloo, Luiz André Barroso
Online Transaction Processing (OLTP)

- Major workload for high performance servers
- Very challenging workload
 - lack of instruction-level parallelism
 - large memory overhead

- Much research on the standard benchmarks
 - TPC-B: Models a large bank with multiple branches
 - TPC-C: Models a warehouse distribution center

- *How does processor and memory system performance of TPC-B and TPC-C compare?*
TPC-B and TPC-C

- Evaluated both workloads side-by-side
 - hardware monitoring
 - full-machine simulation

- Workloads differ in some basic metrics, *e.g.*,

<table>
<thead>
<tr>
<th></th>
<th>Cycles-per-instruction</th>
<th>Dirty Miss Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC-B</td>
<td>8.5</td>
<td>17.8%</td>
</tr>
<tr>
<td>TPC-C</td>
<td>5.3</td>
<td>9.6%</td>
</tr>
</tbody>
</table>

- *Surprisingly, performance of workloads is similar across a range of architectural choices!*
Outline

- Introduction
- Background
 - benchmark descriptions
- Results
- Conclusion
TPC-B: Debit-Credit

- Models a banking system with frequent updates to arbitrary accounts

- 4 tables
 - branch, teller, account, history

- 1 transaction: balance update transaction
 - 3 row select and updates
 - 1 row insertion
TPC-C: Order-Entry

• Models a whole-sale supplier

• 9 tables
 – warehouse, stock, district, customer, order…

• 5 transactions: New-order (45%), payment (43%)…

• New-order transaction (average 10 items)
 – 10 selects
 – 11 select and updates
 – 12 insertions
• Introduction
• Background
• Results
 – methodology
 – hardware and simulation results
• Conclusion
Software and Hardware

- **Software**
 - Oracle v8.0.4 (and v7.1.3)
 - IProbe (hardware counter collection)

- **Hardware monitoring**
 - AlphaServer 8400
 - 8- 612MHz 21164
 - 8K/1-way, 96K/3-way on-chip, 4M/1-way board caches
 - AlphaServer DS20
 - 2- 500MHz 21264
 - 64K/2-way on-chip, 4M/1-way board caches
Simulation

- **SimOS simulator**
 - Full-system simulation
 - configurable

- **Base system**
 - 1GHz processor
 - 64K/2-way L1
 - 4MB/1-way Board-level cache
 - L2 Hit latency: 30ns
 - Memory latency: 100ns
Results

Hardware Monitoring

Debit-Credit (TPC-B)
CPI: 8.5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Debit-Credit</th>
<th>Order-Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icache (global)</td>
<td>13.6%</td>
<td>13.4%</td>
</tr>
<tr>
<td>Dcache (global)</td>
<td>22.2%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Scache (global)</td>
<td>7.5%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Bcache (global)</td>
<td>1.6%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Dirty miss fraction</td>
<td>17.8%</td>
<td>9.6%</td>
</tr>
</tbody>
</table>

Order-Entry (TPC-C)
CPI: 5.3

(AlphaServer 8400)

November 25, 2002
L2 Cache Configurations

- Similar benefits from increased size
- Debit-Credit benefits more from associativity
L1 Cache Size

- Debit-Credit show significant misses even at 128KB size

(2-way associative)
Out-of-order Execution

- Similar performance gains from on hardware
 - AlphaServer DS20 (OOO) vs AlphaServer 8400 (INO)
Chip-level Integration

Alpha 21364

- “Glue-less” multiprocessing
- Lower latency
- Higher bandwidth

Results

<table>
<thead>
<tr>
<th>Latencies (ns)</th>
<th>L2 Hit</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>30</td>
<td>100</td>
<td>175</td>
</tr>
<tr>
<td>All Integrated</td>
<td>15</td>
<td>75</td>
<td>150</td>
</tr>
</tbody>
</table>
Chip-level Integration

- Debit-Credit benefits more from integration
Chip-multiprocessing

- Based on Piranha [ISCA, 2000]
 - 8 single-issue, in-order cores
 - 32K/1-way L1s
 - 1MB/8-way shared L2

- Assumes an ASIC design process
 - target 500MHz
Chip-multiprocessing

- **Debit-Credit**
 - larger relative memory stall time
 - smaller improvement from CMP
 - penalized more by smaller L2 cache
Conclusions

- Both workloads show similar performance across a variety of architectural choices
 - cache organizations
 - out-of-order execution
 - chip-level integration
 - chip-multiprocessing

- TPC-B may be more interesting for architectural studies
 - simpler to set up
 - more memory intensive